
 
1 

  

VERSION 3.2 



 

 
2 

  



 

 
3 

 

 

About the Course............................................................ 4 

Course Description ................................................................. 4 

About the Course............................................................ 5 

Course Content ...................................................................... 5 

Accessing the Course .............................................................. 5 

Course Outline ................................................................ 6 

Session Topics ........................................................................ 6 

Session Format ....................................................................... 8 

Session Plans ............................................................... 12 

Lesson 1: Plains & Hills I ........................................................ 12 

Lesson 2: Plains & Hills II ....................................................... 17 

Lesson 3: Cruise Control ....................................................... 21 

Lesson 4: Dangerous Curves 1............................................... 25 

Lesson 5: Dangerous Curves 2............................................... 29 

Lesson 6: Doodling with Distance.......................................... 33 

Lesson 7: Touch, Avoid, Repeat ............................................ 35 

Lesson 8: Random Obstacles Ahead ...................................... 39 

Lesson 9: Radar Missions ...................................................... 45 

Lesson 10: Colorful Code ...................................................... 49 

Lesson 11: Repeat Again ....................................................... 54 

Lesson 12: Magnetic Manipulation ....................................... 58 

Lesson 13: Line Following Logic............................................. 62 

Lesson 14: A Hard Block Life ................................................. 67 

Frequently Asked Questions......................................... 71 

Credits (in no particular order) ..................................... 72 

Appendix - Teacher’s Notes ......................................... 73 

 

 

T 
O 
C 

Content 



 

 
4 

 

About the Course 
 

 

Course Description 

Cyber Robotics 102 (CR102) is a continuation of the Cyber Robotics 101 course. 

This new course teaches STEM and coding topics using gamification and a 

physically based environment. CR102 introduces autonomous systems, teaches 

scanning and mapping the environment, error correction methods, and different 

system control algorithms. All the above and decision making are practiced in a 

random changing, physics, 3-dimensional environment as in real-life.  By the end of 

the course the students will  understand the physics forces acting on robots and 

their influence on the robot performance (kinematic and dynamics), and be capable 

of controlling and programming a robot that can interact with objects around it and 

can safely navigate through different changing environments. 

The course is powered by CoderZ’s Online Robotics Learning Environment which 

provides besides the online physically based simulation: visual code editor, 

embedded content, and class management.  

CoderZ’s gamification environment provides an effective, informal learning 

environment, and helps students practice real-life situations and challenges in a 

safe environment. This leads to a more engaged learning experience that facilitates 

better knowledge retention. By completing missions, the students will learn the 

course curriculum effectively and yet still have fun. 

The Cyber Robotics 102 curriculum teaches: 

> Physics: 

• Kinematics: Speed, Acceleration 

• Dynamics: Forces, Moments, Levers 

• Sensors and Physics  

> Control systems: 

• Motors  

• Speed Control 

• Obstacle Detection/Avoidance 

• Open/Closed Loop Control 

• Error Correction 

• Two-state Control (On-Off Control) 

• Proportional Control 

 

1 



 

 
5 

 

About the Course 

 

 

> Software: 

• Data Types and Variables 

• Operators: Mathematical and Logical 

• Conditions and Loops  

> Mathematics: 

• Graphical Representation 

• Geometry and Stereometry: Distance, Angles, Coordinates 

• Spatial Cognition 

• Optimization 

The course comprises of 15 sessions that fit into 1-2-hour lessons. The curriculum 

duration may vary depending on the student's previous experience, the time they 

invest in class and at home, and the time the teacher spends on theoretical subjects 

in class. The teacher login allows the educator to control student progress by 

setting the availability of program segments for students.  

 

Course Content 
> Over 25 hours of curriculum, activities, and assignments. 

> Over 70 gamified missions with easy to follow walkthroughs and tips. 

> Teacher resources including guides, presentations and solutions. 

> Online support, knowledge base with articles and a call center. 
 

Accessing the Course 
> Cyber Robotics 102 is available in CoderZ Learning Center. 

> All the course materials are linked from this teacher’s guide. 

> As we update the guide every so often, we recommend you use the latest version 

linked on the course’s notecard in the Learning Center. 

 

 



 

 
6 

Course Outline 

 

Course Outline  
 

 

Session Topics 
# Topic Topics Learned  

1 
Plains & Hills 1 Getting started with robot 

control in a physically-based 

environment. 

Dynamics: distance, speed,  

and acceleration 

 

2 
Plains & Hills 2 Forces and their influence on 

the robot: motor and gravitation 

Newton’s second law: 

acceleration, mass, and forces  

Graphical representation 

 

3 
Cruise Control Understanding speed control & 

feedback - closed loop control  

Conditional statement If/Else 

 

4 
Dangerous 

Curves 1 

Pivot and screw turns using  

two motors 

Gyroscopic sensor 

 

5 
Dangerous 

Curves 2 

Smooth turns 

Understand advantages and 

disadvantages of different turns 

 

6 
Doodling with 

Distance 

Applying what was learned  

so far and carrying out  
creative challenges 

 

7 
Touch, Avoid, 
Repeat 

Obstacles recognition and 

avoidance 

Repeat loops 

Touch and ultrasonic sensors 

 

  

2 



 

 
7 

Course Outline 

 

 

 

 

  
# Topic Topics Learned  

8 
Random 
Obstacles 
Ahead 

Variables: integer & double data type 

Mathematical operators: +, -,*, 

remainder of (modulo) 

performing missions in non-

deterministic environment 

 

9 
Radar 
Missions 

Robotic Joints 

Controlling sensors’ joints  

position for effective scanning  

of the environment  

 

10 
Colorful  
Code 

Color sensor  

Error correction 

Variables: Boolean data type 

Logic operators: not, and, or 

 

11 
Repeat  
Again 

Nested loops and their utilities. 

Applying what was learned so far and 

carrying out challenges and missions 

 

12 
Magnetic 
Manipulation 

Using the magnetic arm to interact 

and rearrange objects in the scene 

 

13 
Line 
Following 
Logic 

Following a line for accurate 

navigation  

On-Off control 

Proportional control 

 

14 
A Hard  
Block Life 

Encoders and their utility for distance 

measurement 

Y-axis Gyro  

Aligning to a line using two color 

sensors and proportional control 

 

|  Session Topics 

 



 

 
8 

Course Outline 

 

 

 

 

Session Format 
 Learning  

Goals 
Each session is based on different topics and Learning Goals, while 

building on top of previous experiences and lessons learned. Actually, 

all the games are based on them.  

We outline the Learning Goals at the start of each session. 

 Resources 
 

We have developed different resources for each session for you to 

use in class. These resources include presentations, tutorials, and 

experimental games, all to ensure the best understanding of the 

material studied. 

 Teacher’s 
Guide 

The teacher’s guide describes the whole course. 

It provides general information: course 

description, general guidelines, and course 

resources, as well as presenting a description of 

each session: Learning Goals, main topics, 

emphasis of main principles, and teacher notes 

which accompany the presentations. 

Look for Teacher’s Guide link on the Cyber 

Robotics 102 notecard. 

 The 
Lesson 
Plans 

Each session is guided by a presentation that covers the entire 

session from theory to practice, including: 

>  Theoretical background 

>  Examples and sample code 

>  Discussion guidelines 

>  Playtime activities 

Each lesson’s presentation is part of the environment and is divided 

into several parts, so they give guidelines and an introduction to the 

following missions. The teacher’s notes (in this teacher’s guide 

appendix) accompany the presentations and give more emphasis, 

ideas for extra-activity in class, advanced information, etc. 

  



 

 
9 

Course Outline 

 

  

 Play Time During each session, students will be required to complete 

missions in CoderZ and experience problem-solving using 

computer code. 

We also mention how long this should take based on our 

experience. This may vary, so feel comfortable to extend play time 

to make sure students make the most of it. If, for whatever reason, 

students do not complete all missions in the allocated time, that is 

fine. Just ask them to complete it at home, or after class. You can 

use the class Heat Map to track their progress. 

If they complete the missions before the time runs out and the 

session materials are all covered, you can either go through some 

solutions with the class or start the next session 

 Reflection We allocate a short time at the beginning of each session (except 

the first session) for reflection on the previous lesson. During this 

time, you are encouraged to engage the classroom in a discussion 

and get students who have solved advanced missions to present 

their solutions to the classroom. We have found this time for 

reflection to really help students deepen their understanding while 

highlighting key Learning Goals 

Here are a few steps we recommend to better prepare for the 

reflection part of the lesson: 

1. Open the class Heat Map to see how the students are coping    

     with the missions.  

2. Identify the missions’ students are most challenged by, look for  

    columns with too many yellow/red tiles. 

3. Identify students who have outperformed the class in those  

    missions, they’ll have green tiles for that mission. 

4. Ask those students to present their solution 

OR 

|  Session Format 

 

https://coderz.zendesk.com/hc/en-us/articles/360011671154-Class-Heat-Maps
https://coderz.zendesk.com/hc/en-us/articles/360011671154-Class-Heat-Maps


 

 
10 

Course Outline 

 

 

 

 

 

  

 Reflection 5. Solve these missions with the class. Use the “open solution”  

    option if you like (from the mission menu). 

6. Ask students to explain what they have learned by watching the  

    solution - this will give you more insight as to what students are  

    struggling with. 

For more information about reflection check out these articles: 

Student Progress Report 

Class Heat Map 

 Mission 
Structure & 
Teaching 
Aids 

Each mission has a solution, which is 

available only to the teacher.  

> Each mission has tips. Encourage 

students to check them out before 

turning to you for help. 

> Each mission has a guided tour which 

starts automatically the first time a mission is opened. The tour 

can be restarted from the mission menu. 

> It is ok if not all your students complete the missions during the 

time frame suggested. Encourage them to complete the 

missions before the next lesson, which they can easily do after 

class, from any computer. 

> If your students complete the missions before the class ends, 

you can ask them to present their solutions to the class and 

discuss the efficiency and compatibility of their solution, or help 

their friends to complete missions. Alternatively, you can 

proceed to the next session. 

> Make sure your students are familiar with: 

• Simulation controls 

• Manual control 

> We recommend you go through the session resources, 

missions, and solutions yourself prior to each lesson. 

> Before the first session create your class & invite your students. 

> Make sure your computer lab meets the minimum requirements, 

and that you’ve followed our class setup guidelines. 

|  Session Format 

 

https://coderz.zendesk.com/hc/en-us/articles/360011828713
https://coderz.zendesk.com/hc/en-us/articles/360011671154-Class-Heat-Maps
https://coderz.zendesk.com/hc/en-us/articles/115003206569-How-Can-I-Control-the-Camera-in-Simulation
https://coderz.zendesk.com/hc/en-us/articles/214336485-Manual-Control
https://coderz.zendesk.com/hc/en-us/articles/115003100665-How-Do-I-Add-A-Class-Play-
https://coderz.zendesk.com/hc/en-us/articles/115004027945-How-Do-I-Add-Students-Play-
https://coderz.zendesk.com/hc/en-us/articles/213010989-What-are-the-Minimum-Requirements-for-Running-CoderZ-


 

 
11 

Course Outline 

 

 

 

 

 

 Pacing 
Guidelines 

Dividing presentations between missions helps you know how the 

lesson is divided logically. Remember that timing varies from class 

to class so remember these are guidelines, not specific instructions 

to follow. If your class needs more time, gi8ve it to them. If they 

progress faster than expected, reflect (see below) on their 

progress. 

 

|  Session Format 

 



 

 
12 

Session Plans 

 

Session Plans 
 

 

Lesson 1: Plains & Hills 1 
Meet Ruby and drive in the new physical environment 

 

 

 

 

 

 

 

 

 

 

 

 

Learning Goals 

By the end of this lesson students will: 

 
Understand the new physical environment  

Familiarity with Ruby - CR102’s innovative robot 

Familiarity with different types of motors 

Understand the new motor power block 

Embed the concepts of speed, acceleration, deceleration 

Newton’s second law: more power means greater acceleration 

Embed the concepts of momentum and braking distance 

Login to CoderZ and complete basic navigation missions 

 

 

 

 

3 



 

 
13 

Session Plans 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

Description 

 
The Cyber Robotics 102 course simulator produces a “real world” physical 

environment so the first goal for Lesson 1 is understanding this environment. A 

physical environment means an environment that simulates reality - i.e. if we 

command our robot to drive, it will start from speed zero and accelerate, or vice 

versa, if we command our robot to stop it will take some time to stop as it 

decelerates gradually. Another example is when we want to drive our robot 

uphill or downhill - it will decelerate or accelerate accordingly, under the 

influence of gravity. 

The new physical environment provides a great opportunity for learning the 

challenges that engineering is dealing with while designing robots such as 

autonomous cars - they encounter physical rules! Therefore, Cyber Robotics 102 

course teaches STEM subjects while enabling the students to develop intuition, 

experience relevant studies, as well as enjoying completing missions for better 

internalization of the curriculum. 

In this lesson, the students will meet Ruby the Robot. They will program her to 

drive forward and backward on even plains, learn to use the "set motor power" 

and "brake" blocks, as well as the meaning of speed and acceleration. The 

students will understand that power leads to acceleration and more power 

leads to a greater acceleration. That is according to Newton's second law, 

which implies that the acceleration of an object is directly proportional to the 

force acting on the object. Newton's second law is one of the fundamental laws 

in physics (dynamics). We will discuss it in the next session. 

At the end of the lesson, the students are required to drive Ruby uphill and 

probably will encounter a difficulty - Ruby fails the mission unless it acquires 

momentum. The students will understand that intuitively, as well as through trial 

and error. In the next lesson we will discuss the physical reasons for that. 

|  Plains & Hills I 

 

https://en.wikipedia.org/wiki/Acceleration
https://en.wikipedia.org/wiki/Physical_law


 

 
14 

Session Plans 

  

Resources 

 
Slideshows - within the pack 

Teacher’s Notes - Plains & Hills1 

Set motor power block - Knowledge Base article 

Wait for block - Knowledge Base article 

Brake until stop block - Knowledge Base article 

Brake wheel block - Knowledge Base article 

Video about position, velocity, acceleration: 

https://www.youtube.com/watch?v=4dCrkp8qgLU 

Video about acceleration:  https://www.youtube.com/watch?v=J3SdZwMcWhA 

|  Plains & Hills I 

 

https://coderz.zendesk.com/hc/en-us/articles/360010536520-Set-Motor-Power-Block
https://coderz.zendesk.com/hc/en-us/articles/212157205-Wait-for-Block
https://coderz.zendesk.com/hc/en-us/articles/360010564600-Brake-Until-Stop-Block
https://coderz.zendesk.com/hc/en-us/articles/360010555520-Brake-Wheel-Block
https://www.youtube.com/watch?v=4dCrkp8qgLU
https://www.youtube.com/watch?v=J3SdZwMcWhA


 

 
15 

Session Plans 

 

 

 

 

  

Pacing Guidelines 

 Step Description Timing Links/comments 

1 
Go through Plains 

& Hills 1 Part 1 

slideshow 

10 minutes Introduction to Ruby, to the physical 

environment 

2 
Mission 1 5 minutes Test Drive: “Set motor power” block 

3 
Go through Plains 

and Hills 1 Part 2 

slideshow 

5 minutes Speed & acceleration 

“Wait for” block 

“Brake until stop” block 

Braking is a gradual process 

4 
Mission 2 5 minutes Drive forward 

5 
Go through Plains 

& Hills 1 Part 3 

slideshow 

5 minutes Drive forward 

Introducing missions 3-5 

6 
Complete 

missions 3-5 

10 minutes Back & Forth 

Rolling Uphill 

Giddy Up 

Doing the last 2 missions the students 
will understand using trial & error that 
they should acquire momentum (by 
driving back) in order to succeed 

7 
Lesson Summary 5 minutes Class Conclusion Questions 

|  Plains & Hills I 

 



 

 
16 

Session Plans 

 

 

 

 

 

 

 

  

Tips 

 
Go through the presentation (and Teacher’s notes), missions, and solutions 

prior to the session. 

Review the available resources suggested above. 

Don’t rush things, take your time. If students do not complete all the missions 

required, either allow them to complete it from home or reserve some time at 

the beginning of the next session. 

If your students complete the missions before the class ends, you can ask them 

to present their solutions to the class and discuss the efficiency and 

compatibility of their solution. Alternatively, you can proceed to the next 

session. 

Class Conclusion Q&A 

  Questions Answers 

1 
What is the result of 

driving Ruby by 

supplying motors with 

constant power? 

Constant power cause Ruby to accelerate - her 

speed rises continuously. 

2 
Why does Ruby not 

stop immediately 

when we brake? 

Braking is a gradual process as objects have 

momentum. 

3 
Why does Ruby find it 

hard to drive uphill? 

Ruby finds it hard to drive uphill because 

gravitational force is pulling her towards Earth. 

|  Plains & Hills I 

 



 

 
17 

Session Plans 

 

 

 

Lesson 2: Plains & Hills 2 
Speed, acceleration, and their relationship to gravity 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

Learning Goals 

By the end of this lesson students will: 

 
Newton’s second law: more power means greater acceleration 

Newton’s second law: more mass means lower acceleration 

Familiarity with gravitational force 

Understanding gravitational force’s impact on driving the robot uphill 



 

 
18 

Session Plans 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

Description 

 
The goal of Lesson 2 is to be familiar with the concept of force and how forces 

influence the robots. In Lesson 1, the students discovered that the more power 

they supply Ruby, the greater it accelerates, and the opposite effect of less 

power. When they tried driving uphill, they saw that Ruby encountered difficulty, 

and they had to program it to drive on a plain and gain momentum. That’s 

because when driving uphill or downhill the gravity force influences Ruby. 

Gravitational force is one of the fundamental forces of nature. This is an 

attractive force which exists between any two objects. Heavier objects always 

exert this force on lighter objects (both objects attract each other with the same 

amount of force, but lighter objects are more affected by this attraction). For 

example, when we throw a stone upward, it falls back down to the earth due to 

the gravitational force of Earth. In a similar way, the Moon orbits the Earth due 

to the gravitational force of the Earth, and planets are orbiting the Sun due to 

the gravitational force of the Sun. Gravitational force was discovered by Sir 

Isaac Newton in 1687.  

Due to this gravitational force, Ruby finds it hard to drive uphill. Gravitational 

force pulls her down to earth, which causes Ruby to decelerate. In order to drive 

to the top of the hill, Ruby needs to start driving uphill with a higher initial 

speed. Therefore, she needs to drive back and away from the bottom of the hill 

in order to accelerate before driving up the slope. 

In the last two missions, Ruby needs to carry a heavy mass. The students will 

find that increasing mass leads to reduced acceleration. That is also according 

to Newton’s second law of motion, which states that acceleration of an object 

is inversely proportional to the mass of the object. We will mention Newton’s 

second law in the next session.  

 

|  Plains & Hills II 

 

https://en.wikipedia.org/wiki/Mass


 

 
19 

Session Plans 

  

Resources 

 
Slideshows - within the pack 

Teacher’s Notes - Plains & Hills 2 

Video about position, velocity, acceleration: 

https://www.youtube.com/watch?v=4dCrkp8qgLU 

Video about acceleration:  https://www.youtube.com/watch?v=J3SdZwMcWhA 

Video about gravity: https://www.youtube.com/watch?v=Les9J2IQIZY  

Video about mass and acceleration: 

https://www.youtube.com/watch?v=WHEeGO9HVPc 

Pacing Guidelines 

 Step Description Timing Links/comments 

1 
Go through Plains 

& Hills 2 Part 1 

slideshow 

10 minutes Graphing Acceleration/ Deceleration. 

Gravity and its effect on Ruby’s driving 

2 
Missions 1-3 10 minutes Long Glide 

Going For A Dip 

Incremental Inclines 

3 
Go through Plains 

& Hills 2 Part 2 

slideshow 

5 minutes The steeper the slope - the more force 

or speed we need in order to climb it. 

The same is for heavier mass. 

4 
Complete 

missions 4-6 

15 minutes Heavy Mass 

Building Up Weights 

Weight Lifting 

5 
Lesson Summary 5 minutes Class Conclusion Questions 

|  Plains & Hills II 

 

https://www.youtube.com/watch?v=4dCrkp8qgLU
https://www.youtube.com/watch?v=J3SdZwMcWhA
https://www.youtube.com/watch?v=LEs9J2IQIZY
https://www.youtube.com/watch?v=WHEeGO9HVPc


 

 
20 

Session Plans 

 

 

 

 

 

 

 

 

 

 

  

Tips 

 
Go through the presentation (and Teacher’s notes), missions, and solutions 

prior to the session. 

Review the available resources suggested above. 

Don’t rush things, take your time. If students do not complete all the missions 

required, either allow them to complete it from home or reserve some time at 

the beginning of the next session. 

If your students complete the missions before the class ends you can ask them 

to present their solutions to the class and discuss the efficiency and 

compatibility of their solution. Alternatively, you can proceed to the next 

session. 

Class Conclusion Q&A 

  Questions Answers 

1 
How does gravitational 

force affect Ruby’s speed? 

Gravitational force causes Ruby to 

decelerate while driving uphill and 

accelerate while driving downhill. 

2 
Describe the relationship 

between the initial speed 

required to succeed driving 

uphill and the slope of the 

hill. 

The steeper the slope is, the more initial 

speed we need in order to climb it. 

3 
Describe the relationship 

between the initial speed 

required to succeed 

pushing the mass and the 

size of the mass. 

The heavier the mass is, the more initial 

speed we need in order to push it. 

4 
How can we increase the 

initial speed? 

Greater initial speed is gained in one of 

two ways: 

|  Plains & Hills II 

 



 

 
21 

Session Plans 

 

 

 

Lesson 3: Cruise Control 
Using system control algorithms to control desired speed 

 

 

 

 

 

 

 

 

 

 

Learning Goals 

By the end of this lesson students will: 

 
The need to limit Ruby’s speed 

Cruise control systems 

Control systems - open loop and closed loop 

Conditional programming: “if/else” block 

Loops Programming: “Repeat forever” loop block 

New movement block: “set wheel speed” 

 

 

 

 

 

 

 

 

 



 

 
22 

Session Plans 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

Description 

 
Lesson 3 introduces the students to closed-loop systems control while 

planning a simple cruise control system. The students will experience the 

difficulty of controlling systems, the need to have feedback from sensors (read 

speed value), and act accordingly (supply or cut power repeatedly in order to 

control the robot’s speed as well as response to changing environment).  

A cruise control system is a basic feature in cars nowadays. It is a system that 

automatically controls the speed of a motor vehicle by referring to a speed set 

by the driver and automatically speeding up or slowing down to maintain that 

pace. If the vehicle’s speed is slower than the set speed, the system will 

accelerate until that speed is met. If the vehicle’s speed is higher than the set 

speed, the system will decelerate until the vehicle slows to the set speed. 

Nowadays, new cars are equipped with adaptive cruise control (ACC), which 

allows the car to follow the car in front of it while continually adjusting speed to 

maintain a safe distance. ACC employs advanced radar and camera technology 

(ACC is not included in the CR102 course contents). 

System control refers to managing or regulating the system’s operation to a 

desirable operation. In the previous missions we controlled the robot by 

programming it to drive with pre-defined power for a pre-defined amount of 

time. Therefore, we had to write a specific program for each mission. 

Controlling a system without monitoring or measuring its performance is called 

an Open-Loop control. 

Sometimes, mainly in an automated system, we must respond to the 

environment in order to operate safely and efficiently. A system control that 

takes into consideration feedback from the environment and operates 

according to that data is called a Closed-Loop control. 

Understanding closed-loop control and experiencing programming together will 

make the students ready to meet the “set wheel speed” movement block. The 

“set wheel speed” movement block enables the user to control the wheel 

speeds easily, while a sophisticated internal cruise control system (a close-loop 

control algorithm) operates in the background. 

|  Cruise Control 



 

 
23 

Session Plans 

  

Resources 

 
Slideshows - within the pack 

Teacher’s Notes - Cruise Control 

Set wheel speed block - Knowledge Base article 

If/else block - Knowledge Base article 

Repeat forever block - Knowledge Base article 

Video about adaptive cruise control:   

https://www.youtube.com/watch?v=GInSPWZRFRM 

Pacing Guidelines 

 Step Description Timing Links/comments 

1 
Go through 
Cruise Control 
Part 1 slideshow 

10 minutes Importance of speed control 

2 
Missions 1 5 minutes Speed limit 

3 
Go through 
Cruise Control 
Part 2 slideshow 

5 minutes Cruise Control 
Open loop vs. Closed loop 
“If/else” block 
“Repeat forever” block 

4 
Mission 2 10 minutes Cruise Control 

5 
Go through 
Cruise Control 
Part 3 slideshow 

5 minutes Introducing missions 3-4 

6 
Missions 3-4 5+5 

minutes 

Uphill Scuttle 
Steady Climbing 

7 
Go through 
Cruise Control 
Part 4 slideshow 

5 minutes “Set Wheel Speed” block 

8 
Missions 5-6 10 minutes Quick to the Block 

Speed Bump 

9 
Lesson Summary 5 minutes Class Conclusion Questions 

|  Cruise Control 

https://coderz.zendesk.com/hc/en-us/articles/360010548540-Set-Wheel-Speed-Block
https://coderz.zendesk.com/hc/en-us/articles/212158225-If-Block
https://coderz.zendesk.com/hc/en-us/articles/115002785234-Repeat-Forever-Block
https://www.youtube.com/watch?v=GInSPWZRFRM


 

 
24 

Session Plans 

 

 

 

 

 

 

 

 

 

 

  

Tips 

 
Go through the presentation (and teacher’s notes), missions, and solutions prior 

to the session. 

Review the available resources suggested above. 

This lesson probably will take more than 45 minutes. Don’t rush things and take your 

time. If students do not complete all the missions required, either allow them to complete 

it from home or reserve some time at the beginning of the next session. 

If your students complete the missions before the class ends you can ask them 

to present their solutions to the class and discuss the efficiency and 

compatibility of their solution. Alternatively, you can proceed to the next session. 

Class Conclusion Q&A 

  Questions Answers 

1 
Why it is important 

to set a speed 

limit?  

High speed makes it difficult to control the robot: as 

speed increases - braking distance increases and 

accuracy decreases. This can cause severe 

accidents. 

2 
What is the 

difference between 

“open loop” and 

“close loop” 

system control? 

Which is better? 

An open-loop control system does not take into 

consideration feedback from the environment and 

operates according to pre-defined programming. A 

closed-loop control system takes into consideration 

feedback from the environment and operates according 

to that feedback. That makes closed loop systems better 

as the can respond to changing environment. 

3 
Why did we use a 

“repeat forever” 

block in order to 

control our speed? 

We used “repeat forever” block in order to measure 

constantly our speed. Without the “repeat forever” block, 

the “if-else” block will check speed only on program start 

and afterwards speed will not be monitored. 

 4 
What is the 

advantage of using 

the “set wheel 

speed” block? 

The “set wheel speed” block enables us to control 

Ruby’s speed easily while operating in background a 

sophisticated internal cruise control system 

|  Cruise Control 



 

 
25 

Session Plans 

 

 

 

 

Lesson 4: Dangerous Curves 1 
Making turns while measuring distances and angles 

 

 

 

 

 

 

 

 

 

Learning Goals 

By the end of this lesson students will: 

 
The Gyroscope sensor 

Learning the different types of turns that the robot can perform and how to 

execute them 

Understanding the idea that precision is required for accurate navigation 

Understanding that speed and accuracy are inversely related 

The “Drive Distance” movement block 

Using Explore Mode to measure distances and angles 

Measuring and practicing calculations of angles 

 

 

 

 

 

 

 



 

 
26 

Session Plans 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

Description 

 
In Lesson 4, the goal is to understand the kinds of turns the robot can perform, 

and how to execute them. The students will meet the Gyroscope sensor and use 

it to perform different turns.  

The Gyroscope Sensor measures in degrees how far the robot has turned from 

its starting point. Ruby, our innovative robot, has 3 gyroscope sensors for the 3 

axes. In this lesson the student will use only the Y-axis (rotation). 

There are several different types of turns we can execute: screw turns, pivot 

turns, and smooth turns. In Lesson 4, the students will experiment with the first 

two. These two types of turns require the “break until stop” block in order to 

perform an accurate turn (in order to perform accurate turns, we need to first 

stop the robot, as speed reduces accuracy). 

While performing several consecutive turns, the students will remember the 

“reset gyro” block. Resetting the gyroscope sensor after use or before using it 

again makes following degrees easier. 

In order to navigate accurately, the students will use Explore Mode to measure 

distances and angles. After measuring the distance, the students can drive 

distance accurately using the “drive distance” block, which enables control of 

Ruby’s driving distance using an internal algorithm which measures driving 

distance and controls speed accordingly. The algorithm uses Ruby’s encoders. 

We will learn about the encoders in the more advanced lessons. 

|  Dangerous Curves 1 



 

 
27 

Session Plans 

  

Resources 

 
Slideshows - within the pack 

Teacher’s Notes - Dangerous Curves 1 

Gyro Sensor - Knowledge Base article 

Reset gyro block - Knowledge Base article 

Drive distance block - Knowledge Base article 

Explore Mode - Knowledge Base article 

Pacing Guidelines 

 Step Description Timing Links/comments 

1 
Go through 

Dangerous 

Curves 1 Part 1 

slideshow 

10 minutes Using the gyro sensor 
Type of turns 
Low speed leads to a precise turn 
Explore Mode - measure distances 
and angles 

2 
Missions 1-2 10 minutes L Turn 

V Turn 

3 
Go through 

Dangerous 

Curves 1 Part 2 

slideshow 

5 minutes Gyro readings are continuous 
The “reset gyro” block 

4 
Mission 3-4 10 minutes N Curve 

M Curve 

5 
Go through 

Dangerous 

Curves 1 Part 3 

slideshow 

5 minutes Pivot turns 

6 
Missions 5-6 10 minutes I Curve 

J Curve 

7 
Lesson Summary 5 minutes Class Conclusion Questions 

|  Dangerous Curves 1 

https://coderz.zendesk.com/hc/en-us/articles/115003083109-The-Gyro-Sensor
https://coderz.zendesk.com/hc/en-us/articles/360011215519-Get-Gyro-Reset-Block
https://coderz.zendesk.com/hc/en-us/articles/360010551900-Drive-Distance-Block
https://coderz.zendesk.com/hc/en-us/search/click?data=BAh7CjoHaWRsKwgzg0%2FSUwA6CXR5cGVJIgxhcnRpY2xlBjoGRVQ6CHVybEkiVGh0dHBzOi8vY29kZXJ6LnplbmRlc2suY29tL2hjL2VuLXVzL2FydGljbGVzLzM2MDAxMDcxMTg1OS1XaGF0LWlzLUV4cGxvcmUtTW9kZS0GOwdUOg5zZWFyY2hfaWRJIilhMGIwMDA1Ni1lNmZiLTRmYmUtODFhZi0yYzczNGU3Y2U1NTIGOwdGOglyYW5raQY%3D--d05ce8eecb2fa3cd2116d8b9e68fb16d130a3262


 

 
28 

Session Plans 

 

 

 

 

 

 

 

 

 

 

  

Tips 

 
Go through the presentation (and teacher’s notes), missions, and solutions prior 

to the session. 

Review the available resources suggested above. 

This lesson probably will take more than 45 minutes. Don’t rush things, take 

your time. If students do not complete all the missions required, either allow 

them to complete it from home or reserve some time at the beginning of the 

next session. 

If your students complete the missions before the class ends you can ask them 

to present their solutions to the class and discuss the efficiency and 

compatibility of their solution. Alternatively, you can proceed to the next session 

Class Conclusion Q&A 

  Questions Answers 

1 
What information do we 

get from the gyro sensor 

and what it is good for?  

The gyro sensor measures in degrees how far 

the robot has turned from its starting point. 

Using the gyro sensor’s data, we can perform 

turns accurately.  

2 
When do we use the  

“reset gyro” block? 

We use the “gyro reset” block whenever we 

want to define a new reference direction. 

Defining a new reference direction helps us 

calculate angles as we do not need to 

remember the accumulative angle we have 

turned. 

3 
What is the difference 

between pivot and  

screw turns? 

A screw turn is a turn around the center point 

of the robot, while a pivot turn is a turn 

around one of the wheels. Screw turns are 

better for narrow turns. 

 4 
What is the relationship 

between speed and 

accuracy? 

Speed and accuracy are inversely related - so 

if we must be precise, we must drive at a 

lower speed. 

|  Dangerous Curves 1 



 

 
29 

Session Plans 

 

 

 

 

 

Lesson 5: Dangerous Curves 2 
Accurate turns using the “turn to” block. Smooth Turns . 

 

 

 

 

 

 

 

 

Learning Goals 

By the end of this lesson students will: 

 
Smooth turn practice 

The new “turn to” movement block  

Practicing different kinds of turns 

 

 

 

 

 

 

 

 

 

 

 



 

 
30 

Session Plans 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

Description 

 
Lesson 5 introduces a new movement block, the “turn to” block. Using a “turn 

to” block enables us to program Ruby to turn to a defined angle easily. The “turn 

to” block performs a screw turn using the gyro sensor and a closed-loop control 

algorithm which leads to an accurate turn. Remember the difficulties we 

encountered in Lesson 4 to perform an accurate turn because of the robot’s 

momentum! 

Lesson 5 teaches what a smooth turn is and how to perform it. A smooth turn is 

a gradual turn in which the robot’s wheels both turn in the same direction at 

different speeds: the outer wheel turns faster than the inner wheel. The turn is in 

the direction of the slower wheel. A smooth turn does not require stopping and 

Ruby can perform it without the need to use the “break until stop” block. 

Therefore, it is the most rapid turn. Its main disadvantages are that it requires  

a wide space and it is hard to be accurate. To improve accuracy, we can  

reduce speed. 

While performing a smooth turn, the students use an open loop control, as the 

wheel’s speed is pre-programmed and there is no input or feedback from the 

environment for monitoring performance. In advanced lessons we will learn and 

practice methods for performing smooth turns using feedback, so performing 

turns will be much more accurate.   

At the end of the lesson, the students will practice different missions which 

involve different kinds of courses - plains, hills, straight lines, and curves. 

|  Dangerous Curves 2 



 

 
31 

Session Plans 

  

Resources 

 
Slideshows - within the pack 

Teacher’s Notes - Dangerous Curves 2 

Turn to block - Knowledge Base article 

Pacing Guidelines 

 Step Description Timing Links/comments 

1 
Go through 

Dangerous 

Curves 2 Part 1 

slideshow 

10 minutes “Turn To” Block 

2 
Missions 1-2 10 minutes N Curve Again 

M Curve Again 

3 
Go through 

Dangerous 

Curves 2 Part 2 

slideshow 

5 minutes Smooth turns 

4 
Mission 3-4 15 minutes U Turn 

S Turn 

5 
Go through 

Dangerous 

Curves 2 Part 3 

slideshow 

5 minutes Drawing trails 

6 
Missions 5-6 15 minutes Freeform Art 

Star Trail 

7 
Lesson Summary 5 minutes Class Conclusion Questions 

|  Dangerous Curves 1 

https://coderz.zendesk.com/hc/en-us/articles/360010684479-Turn-To-Block


 

 
32 

Session Plans 

 

 

 

 

 

 

 

 

 

 

  

Tips 

 
Go through the presentation (and teacher’s notes), missions, and solutions prior 

to the session. 

Review the available resources suggested above. 

This lesson probably will take more than 45 minutes. Don’t rush things, take 

your time. If students do not complete all the missions required, either allow 

them to complete it from home or reserve some time at the beginning of the 

next session. 

If your students complete the missions before the class ends you can ask  

them to present their solutions to the class and discuss the efficiency  

and compatibility of their solution. Alternatively, you can proceed to the  

next session. 

Class Conclusion Q&A 

  Questions Answers 

1 
What is the benefit of 

using the “turn to” block?  

The “turn to” block enables us to program 

accurate screw turns easily: It uses a 

sophisticated system control algorithm in 

order to turn accurately while the user is 

required only to enter the desired turn angle. 

2 
What is a smooth turn? A smooth turn is a gradual turn in which the 

robot’s wheels both turn in the same direction 

at different speeds. Smooth turns differ from 

each other by the turning radius. 

3 
If the wheel speed is  

80% for the left wheel  

and 60% for the right 

wheel, in which direction 

will Ruby turn? 

Ruby will turn right. 

|  Dangerous Curves 1 



 

 
33 

Session Plans 

 

 

 

 

 

Lesson 6: Doodling with Distance 
Draw and doodle using 3 trail drawers . 

 

 

 

 

 

 

 

 

Learning Goals 

By the end of this lesson students will: 

 
Applying what was learned so far and carrying out creative challenges 

Using three trail drawers 

Fun and creativity 

 

 

 

 

 

 

 

 

 

 

 

 

Description 

 
The goal of Lesson 6 is to practice the skills learned in the first 5 sessions while 

drawing interesting shapes. Ruby will be drawing and doodling using the trail 

drawers. 

The students will practice: 

> Driving back and forth 

> Turning and curving 

> Using the gyro sensor and the trail drawers (left, right, bottom) 

> Using Explore Mode to measure distances and angles 

The 3 trail drawers enable the students to be creative and enjoy generating 

interesting patterns and drawings. 

 



 

 
34 

Session Plans 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

Resources 

 
Slideshow - within the pack 

Teacher’s Notes - Doodling with Distance 

Trail blocks – Knowledge Base article 

Pacing Guidelines 

 Step Description Timing Links/comments 

1 
Go through 

Dangerous 

Curves 2 Part 1 

slideshow 

5 minutes Trail drawers 

2 
Missions 1-6 40 minutes Going the Distance 

Double Distance Drive 

Snake! 

Tracing Letters: G 

Ruby’s Emoji 

Fly Your Own Flag 

Tips 

 
Go through the presentation (and teacher’s notes), missions, and solutions prior 

to the session. 

Review the available resources suggested above. 

If your students complete the missions before the class ends you can ask them 

to present their drawings to the class or let them draw free form art. 

Alternatively, you can proceed to the next session 

|  Doodling with Distance 

https://coderz.zendesk.com/hc/en-us/articles/360013436259-Trail-Blocks


 

 
35 

Session Plans 

 

 

 

 

 

Lesson 7: Touch, Avoid, Repeat 
Using a touch sensor and distance sensor while performing repetitive operations . 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Learning Goals 

By the end of this lesson students will: 

 
Robots and their sensors  

Object avoidance and recognition 

The Touch Sensor  

The Ultrasonic Sensor 

Repeat Loops 

Boolean and integers data types 



 

 
36 

Session Plans 

 

 

 

 

 

 

 

  

Description 

 
In Lesson 7, students will learn about the Touch and Ultrasonic sensors as well 

as repeat loop programming. After understanding closed-loop control systems, 

the students will understand the function of sensors in controlling robots - the 

sensors supply the feedback information in the closed loop control system. 

The Touch sensor helps Ruby perform missions as well as navigate when there 

are good containers around. For example, Ruby will drive until the touch sensor 

is pressed and then perform a turn. The touch sensor returns a Boolean data 

type, i.e. can have only two possible values: true (when pressed) or false (when 

released). 

The Ultrasonic sensor helps Ruby avoid obstacles. By measuring the time it 

takes for an ultrasonic (sound) beam to reach an object and return, and 

knowing the speed of sound, the sensor calculates the distance from Ruby to 

the obstacle. The ultrasonic sensor returns the distance from the obstacle in 

front of it in centimeters. By reading the distance Ruby decides how to navigate. 

As software becomes more and more sophisticated, there is a requirement to 

write a clear and readable code. Repeat loops helps us to do so; whenever there 

is a scenario that Ruby needs to do several times, we can use the repeat loop to 

program Ruby to do it several times, instead of writing program code for each 

occurrence. 

Resources 

 
Slideshows - within the pack 

Teacher’s Notes - Touch, Avoid, Repeat 

Repeat Loop – Knowledge Base article 

Touch Sensor – Knowledge Base article 

Ultrasonic Sensor – Knowledge Base article 

|  Touch, Avoid, Repeat 

https://coderz.zendesk.com/hc/en-us/articles/212157425-Repeat-Block
https://coderz.zendesk.com/hc/en-us/articles/115003081709-Touch-Sensor
https://coderz.zendesk.com/hc/en-us/articles/115003082269-The-Ultrasonic-Sensor


 

 
37 

Session Plans 

  

Pacing Guidelines 

 Step Description Timing Links/comments 

1 
Go through 

Touch, Avoid, 

Repeat Part 1 

slideshow 

10 minutes Touch Sensor 

“Repeat” block 

2 
Missions 1-3 15 minutes Green Containers 

Green on the Left  

Repeating Green 

3 
Go through 

Touch, Avoid, 

Repeat Part 2 

slideshow 

5 minutes The steeper the slope - the more force 

or speed we need in order to climb it. 

The same is for heavier mass. 

4 
Complete 

missions 4-5 

10 minutes Green Between the Reds 

Forest of Containers (bonus) 

5 
Lesson Summary 5 minutes Class Conclusion Questions 

Tips 

 
Go through the presentation (and teacher’s notes), missions, and solutions prior 

to the session. 

 Review the available resources suggested above. 

This lesson probably will take more than 45 minutes. Don’t rush things, take 

your time. If students do not complete all the missions required, either allow 

them to complete it from home or reserve some time at the beginning of the 

next session. 

If your students complete the missions before the class ends you can ask them 

to present their solutions to the class and discuss the efficiency and 

compatibility of their solution. Alternatively, you can proceed to the next 

session. 

|  Touch, Avoid, Repeat 



 

 
38 

Session Plans 

 

 

 

 

 

 

 

 

 

 

  

Class Conclusion Q&A 

  Questions Answers 

1 
When did we use the 

touch sensor?  

We used the touch sensor when we could use 

touching obstacles for navigation – for 

example, with the good containers in the first 

3 missions. 

2 
When did we use an 

ultrasonic sensor? 

We used the ultrasonic sensor when we were 

required to avoid obstacles or navigate by 

obstacles locations. An ultrasonic sensor is 

much more efficient than touch sensor- it 

recognizes the obstacles before touching! In 

fact, we can use the distance sensor as a 

touch sensor. When doing so, we just have to 

remember that the ultrasonic sensor is 

positioned between the robot’s arms and 

does not protrude out in the front like the 

touch sensor does. This means that Ruby is 

touching the object the ultrasonic sensor 

shows a small positive value of distance, 

rather than zero. 

3 
What is the advantage of 

using the “repeat” block? 

Repeat blocks enable us to write simple and 

short code when we need to perform 

operations that occur more than one time. 

|  Touch, Avoid, Repeat 



 

 
39 

Session Plans 

 

 

 

 

 

Lesson 8: Random Obstacles Ahead 
Use of variables in a non-deterministic environment 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

  

Learning Goals 

By the end of this lesson students will: 

 
Variables of integer and double data type 

Mathematical operators: +, -, x, remainder of (modulo) 

Performing missions in non-deterministic (random) environments 

Spatial cognition – identifying the start of/end of obstacles 

Making decisions in a non-deterministic environment 



 

 
40 

Session Plans 

Description 

 
Lesson 8 presents variables while practicing using them for scanning the 

environment and making decisions.  

Variables are used to store information which we need to use later or several 

times in our program. There are different types of variables, which define their 

logical representation and size. In this lesson we will learn about the integer and 

double data type. 

Applying mathematical operations on variables enables us to use variables for 

different missions which require mathematical calculations, such as obstacle 

counting, identifying objects according to their relative locations, etc. 

Integer (int) data type variables store a whole positive or negative number, or a 

number with no fractional parts. Integers can be added, subtracted, and 

multiplied. Care must be taken when they are divided, as the division of two 

integers is not necessarily another integer.  

Double data type variables store a positive or negative number with fractional 

parts. Therefore, it uses more computer memory, as implied by its name. The 

ultrasonic sensor measures distance and returns a decimal number with a 

decimal separator (fractional value). Therefore, the distance variable must be 

stored in a “double” data type variable. The gyro sensor measures angles 

accurately, so it also returns angle values in a double data type. The “turn to” 

block can turn to fractional numbers of angles as well as negative angles and 

can accept both integers and double data types. 

Ruby will use variables to program driving distance and differentiate between 

objects in her surroundings using her front or side ultrasonic sensors. 

Furthermore, Ruby will make decisions dependent on an object’s location or 

number. For example, we can perform a different action on objects located 

every third position. 

In order to identify numbers, or in our case obstacle positions, we use division 

and fractions. The “remainder of” operation returns the remainder after division. 

If a number is a multiple of its divisor, the remainder of operation returns 0: the 

remainder of 4 divided by 2 equals 0 (4 ÷ 2 = 2, no remainder).  

 

 

| Random Obstacles Ahead 



 

 
41 

Session Plans 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

Another example: the remainder of 8 divided by 3 is 2 (because 3 can fit into  

8 twice whole – 6, with a remainder of 2). 5 divided by 4 returns 1 with  

a remainder of 1, therefore the remainder of a block will return a value of 1.  

The remainder of an operation has many uses, such as distinguishing between 

odd and even numbers: if the remainder of a number divided by 2 returns 0, it is 

an even number; if the remainder of a number divided by 2 returns 1, it is an  

odd number. We will use this method to differentiate between obstacles as odd 

or even. 

In Lesson 8 the objects’ locations are not always deterministic. Objects will 

sometimes appear in random locations (as they do in real life). Autonomous 

systems need to accurately interpret their surroundings to make well-informed 

decisions about objects that are constantly changing. Using a non-deterministic 

environment will encourage the students to use Ruby’s sensors wisely and use 

advanced programming. 

Resources 

 
Slideshows - within the pack 

Teacher’s Notes - Random Obstacles Ahead 

Variables – Knowledge Base articles 

Various data blocks – Knowledge Base articles 

| Random Obstacles Ahead 

https://coderz.zendesk.com/hc/en-us/sections/203139465-Variables
https://coderz.zendesk.com/hc/en-us/sections/203139485-Data


 

 
42 

Session Plans 

  

Pacing Guidelines 

 Step Description Timing Links/comments 

1 
Go through 

Random Obstacles 

Ahead Part 1 

slideshow 

10 minutes Variables- Kind of variables,  

Using variables 

Mathematic operators 

2 
Missions 1-2 10 minutes Growing Distance  

Two Times The Distance  

3 
Go through 

Random Obstacles 

Ahead Part 2 

slideshow 

10 minutes Random events 

Counting obstacles 

4 
Missions 3-4 10 minutes Third is Random 

Random Corner 

5 
Mid-session 

Summary 

5 minutes Class Conclusion Questions 1-4 

6 
Go through 

Random Obstacles 

Ahead Part 3 

slideshow 

10 minutes  Counting a circle of obstacles  

7 
Missions 5-6 10 minutes The Fifth Obstacle 

Obstacle Counter 
 

8 
Go through 

Random Obstacles 

Ahead Part 4 

slideshow 

5 minutes  “Remainder of” block 

9 
Missions 7-8 15 minutes Odd or Even 

Third is Good 
 

10 
Lesson Summary 5 minutes Class Conclusion Questions 5-7 

| Random Obstacles Ahead 



 

 
43 

Session Plans 

 

 

 

 

 

 

 

 

 

  

Tips 

 
Go through the presentation (and teacher’s notes), missions, and solutions prior 

to the session. 

Review the available resources suggested above. 

This lesson is long and will probably take 2 hours. We suggest splitting it into 

two sessions and performing a mid-class question or discussion at the end of 

the first session. 

If your students complete the missions before the class ends you can ask them 

to present their solutions to the class and discuss the efficiency and 

compatibility of their solution. Alternatively, you can proceed to the next 

session. 

Class Conclusion Q&A 

  Questions Answers 

1 
When should we use 

variables?  

We need variables whenever we need to store 

data or information that will be later used, 

referenced, or manipulated. 

2 
Describe 3 types of 

variables you know.  

Integer - a whole positive or negative number, a 

number with no fractional parts. Examples: 1, 2, -5, 

341, 1,002.  

Boolean - has one of two possible values: true or 

false. 

String - a sequence or string of connected 

characters, surrounded by quotation marks. This 

type of variable has no numerical value and it 

cannot be used for mathematical calculations 

even if it contains number characters; it is only 

text. Examples: “Hello world”, “this is a string of 

characters”, “fourteen” (stress that this last 

example is a word and not the number 14). 

| Random Obstacles Ahead | Random Obstacles Ahead 



 

 
44 

Session Plans 

 

 

 

 

  

Class Conclusion Q&A 

  Questions Answers 

3 
What is a random 

event? Give an 

example of a random 

event. 

A random event is an event that has some 

scenarios that do not appear exactly in constant 

order. Therefore, it is impossible to predict exactly 

the next immediate scenario. 

The opposite of random is deterministic, which 

means that scenario order or values are 

predictable exactly. The toss of a coin, the throw 

of dice, and lottery draws, as well as our obstacle 

locations, are all examples of random events. 

4 
Using the distance 

sensor, how do we 

detect that we passed 

an obstacle? 

We detect first the beginning of the obstacle 

(distance is smaller than…), afterwards we detect 

passing of the obstacle (distance is greater 

than…) 

5 
How can we tell if a 

number is odd or 

even by using the 

“remainder of” block? 

With the help of the “remainder of” calculation we 

can tell if one number is a multiple of the other. If 

a number is a multiple of 2 then the remainder of 

its division by 2 equals 0. By comparing the 

remainder of the division to 0 we can perform 

different action on even and odd numbers. 

6 
How can we tell if a 

number is a multiple 

of 3 by using the 

“remainder of” block? 

We can determine if a number is divisible by 3 by 

comparing the remainder of its division by 3 to 

zero. 

7 
As we turned from 

the center of the 

circle towards an 

object, how did we 

know to drive back to 

the midpoint? 

As we turned from the center of the circle towards 

the obstacle, we knew how to drive back to the 

midpoint by measuring the distance from the 

obstacle and saving it as a variable before we 

drive towards it, then using the variable to drive 

back the same distance we drove forward. 



 

 
45 

Session Plans 

 

 

 

 

Lesson 9: Radar Missions 
Rotating Top Ultrasonic Sensor for Scanning 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Learning Goals 

By the end of this lesson students will: 

 
Meet Ruby’s sensor ports 

Adjustment of port joints for efficient performance 

Using the top ultrasonic sensor 

Scanning the environment while keeping driving forward 



 

 
46 

Session Plans 

 

 

 

 

 

  Description 

 
Lesson 9 introduces Ruby’s top ultrasonic sensor. The top ultrasonic sensor is 

built with several joints, quite like a human’s arm. Different joints move in 

different ways - sideways or up and down. In Lesson 9, we will use joint number 

0 to rotate sideways and scan the surroundings.  

In Lesson 8, Ruby scanned her surroundings by using her front ultrasonic sensor 

which pointed forward, so scanning the environment forces her to stop driving 

or turn around in place. Lesson 9 shows the configurability option of the 

sensors’ location so Ruby can use her top ultrasonic sensor as a radar to scan 

her environment while she keeps moving.   

Using the top ultrasonic sensor and programming the position to which it is 

pointing, will enable us to identify turns even if they are in a random location or 

random direction. Ruby will drive forward while scanning around her sides to 

identify corners and the right location to turn. In Lesson 9 there will always be 

one possible turn, but its direction can be random. 

| Radar Missions 



 

 
47 

Session Plans 

  

Resources 

 
Slideshows - within the pack 

Teacher’s Notes - Radar Missions 

Ultrasonic Sensor – Knowledge Base article 

Set Sensor Rotation block – Knowledge Base article 

Get Sensor Rotation Block – Knowledge Base article 

Pacing Guidelines 

 Step Description Timing Links/comments 

1 
Go through Radar 

Missions Part 1 

slideshow 

10 minutes  Top Ultrasonic sensor joints 

2 
Missions 1-3 30 minutes Pre-Radar 

Set and Turn 

Out in The Open 
 

3 
Go through Radar 

Missions Part 2 

slideshow 

10 minutes  Constantly scanning for random turns 

4 
Complete 

missions 4-6 

30 minutes Set and Turn and Set and Turn 

Scan 

Scan Some More 
 

5 
Lesson Summary 5 minutes   Class Conclusion Questions 

| Radar Missions 

https://coderz.zendesk.com/hc/en-us/articles/115003082269-The-Ultrasonic-Sensor
https://coderz.zendesk.com/hc/en-us/articles/360010575320-Set-Sensor-Rotation-Block
https://coderz.zendesk.com/hc/en-us/articles/360010691579-Get-Sensor-Rotation-Block


 

 
48 

Session Plans 

 

  

Tips 

 
Go through the presentation (and teacher’s notes), missions, and solutions prior 

to the session. 

Review the available resources suggested above. 

This lesson probably will take more than 45 minutes. Don’t rush things, take 

your time. If students do not complete all the missions required, either allow 

them to complete it from home or reserve some time at the beginning of the 

next session. 

If your students complete the missions before the class ends you can ask  

them to present their solutions to the class and discuss the efficiency and 

compatibility of their solution. Alternatively, you can proceed to the next 

session. 

Class Conclusion Q&A 

  Questions Answers 

1 
What are the advantages  

of using the top ultrasonic 

joints for scanning?  

Using the top ultrasonic joints allows Ruby 

to scan the environment without 

interrupting her current operation (such as 

driving). 

2 
How can we use the top 

ultrasonic sensor to turn  

right without hitting the wall? 

We will adjust the top ultrasonic sensor to 

50 degrees backwards so Ruby can safely 

turn right without hitting the fence. 

3 
How can we turn safely  

when turn direction is 

random (left or right) 

We will turn the sensor left and right 

regularly until turn is detected. Upon 

detection we will determine the turn 

direction. 

| Radar Missions 



 

 
49 

Session Plans 

 

 

 

 

Lesson 10: Colorful Code 
A: Color Sensor and Logic Operators: AND, OR, NOT . 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

  

Learning Goals 

By the end of this lesson students will: 

 
The color sensor  

String data type 

Logic operators: NOT, AND, OR 

Error correction 



 

 
50 

Session Plans 

 

 

Description 

 
The goal for Lesson 10 is to recall the color sensor and use it to teach logical 

operators: NOT, AND, OR.  

Ruby’s color sensor has two functions: 
1. Color Detection 
2. Reflected Light Measurement  

In Lesson 10 we will use the Color Detection mode. Color detection works by 

shining a white light at an object (actually, three beams of light - red, green, blue 

- RGB) and then decoding the reflected color. The color sensor returns 9 

possible string data type values – Black, White, Red, Green, Cyan, Blue, 

Magenta, Yellow, and Brown (Note: the values are capitalized). We can compare 

the result to the desired color name and make decisions accordingly.  

Lesson 10 also teaches error correction. Comparison to a desired color is 

sometimes essential but not enough. In previous sessions we have learned that 

Ruby cannot stop immediately and there is a stop distance (“drifting”) that is 

dependent on driving speed. Therefore, when we want to be accurate and stop 

exactly at the end of a line drawn on the floor, we need to do some corrections 

and drive backwards. The requirement for correction is critical as driving speed grows. 

Some missions require checking if two conditions occur simultaneously. For 

that we will use the AND operator which returns TRUE only if both conditions 

are met. Other missions require checking two conditions and acting if at least 

one of the conditions is met. For that we will use the OR operator which returns 

TRUE if at least one condition is met. When there is a requirement that a 

condition does not occur, we will use the NOT operator. Below you can find 

truth tables of AND, OR, NOT logic operators:  

 
 
  

 

 
 

 
The NOT operator can be used for toggling value of Boolean variable: not(true) 

= false, not(false) = true. We will use it to differentiate between odd or even 

rows: not(odd) = even. 

| Colorful Code 



 

 
51 

Session Plans 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

Resources 

 
Slideshows - within the pack 

Teacher’s Notes - Colorful Code 

Color Sensor – Knowledge Base article 

Various data blocks – Knowledge Base articles 

Video about Boolean operators help searching with google: 

https://www.youtube.com/watch?v=bCAULDuMcso 

Pacing Guidelines 

 Step Description Timing Links/comments 

1 
Go through 

Colorful Code 

Part 1 slideshow 

10 minutes Color sensor 

String Data type 

Error Correction 

2 
Missions 1-2 15 minutes Three Yellow Spots 

Color Line Correction 

3 
Go through 

Colorful Code 

Part 2 slideshow 

5+10 

minutes 

Operators: NOT 

Introducing driving along several rows 

4 
Mission 3-5 20 minutes Yellow Brick Roads 

Roads and Operators 

Weightboxes on Green Lines 

5 
Go through 

Colorful Code 

Part 3 slideshow 

5 minutes Operators: AND, OR 

6 
Missions 6-7 15 minutes Amazing Colors 

A Celebration of Colors 

7 
Missions 8-9 

(Bonus) 

10 minutes Colored Circles 1 

Colored Circles 2 

8 
Lesson Summary 5 minutes Class Conclusion Questions 

| Colorful Code 

https://coderz.zendesk.com/hc/en-us/articles/115003082289-The-Color-Sensor
https://coderz.zendesk.com/hc/en-us/sections/203139485-Data
https://www.youtube.com/watch?v=bCAULDuMcso


 

 
52 

Session Plans 

  

Tips 

 
Go through the presentation (and teacher’s notes), missions, and solutions prior 

to the session. 

Review the available resources suggested above. 

This lesson probably will take more than 45 minutes. Don’t rush things, take 

your time. If students do not complete all the missions required, either allow 

them to complete it from home or reserve some time at the beginning of the 

next session. 

If your students complete the missions before the class ends you can ask them 

to present their solutions to the class and discuss the efficiency and 

compatibility of their solution. Alternatively, you can proceed to the next session. 

Class Conclusion Q&A 

  Questions Answers 

1 
What kind of data does  

the color sensor return  

when working in color 

detection mode?  

String data type (text inside quotation 

marks) 

2 
When we wanted to travel  

on a colored line, we 

programmed Ruby to stop 

when detecting the end of the 

line and then drive back. This 

is called “error correction”. 

Can you explain what was  

the error and how did we 

correct it? 

The error is the fact that even though Ruby 

stopped power to her motors when her 

color sensor no longer sees the colored 

line, she continued to move forward a little 

bit and off the line because of her high 

speed. We corrected by driving backwards 

at low speed until Ruby’s color sensor 

sees the colored line on the floor again. 

| Colorful Code 



 

 
53 

Session Plans 

 

 

 

 

 

 

 

 

 

 

  

 3 
How can we use the logic 

operator “NOT” to distinguish 

between odd or even lines? 

By declaring a boolean type variable set to 

TRUE for the odd line at the start of the 

program, and then at the end of the loop 

using the NOT block to set the variable’s 

value to NOT ITSELF. This effectively 

toggles the variable between true and 

false, and so we can use TRUE as odd (1, 

3, 5) and FALSE as even (2, 4, 6). 

4 
We have learned to 

distinguish between odd or 

even numbers using a 

mathematical operation 

(“Random Obstacles Ahead” 

pack). Do you remember 

how? 

In “Random Obstacles Ahead” we used the 

“remainder of” block to tell if a number is 

odd or even. If a number is a multiple of 2 

then the remainder of its division by 2 

equals 0, it is even. If not, it is odd. 

5 
We want to do something 

only if 2 conditions are met at 

the same time. Which 

operator will we use? 

The AND operator. 

6 
We want to do something if 

at least one of two conditions 

is met. Which operator will 

we use? 

The OR operator. 

7 
We want to do something  

only if a certain condition is 

not met. Which operator will 

we use?  

The NOT operator. 

 

| Colorful Code 



 

 
54 

Session Plans 

 

 

 

 

 

Lesson 11: Repeat Again 
Nested Loops and Using X-Gyro to Identify Plain/Uphill/Downhill 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

  

Learning Goals 

By the end of this lesson students will: 

 
Nested Repeat loops  

X-axis gyro  

Applying what was learned so far and carrying out challenges and missions 



 

 
55 

Session Plans 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

Description 

 
Lesson 11 teaches students to use nested loops. Nested loops, like “simple 

loops”, help us to write clear and short code.  

Nested loops are used whenever there is a scenario that involves performing an 

action several times in succession, and each action contains several inner 

repeated actions.  

We can understand using nested loop by looking on the calendar: the outer loop 

can be considered as the month and the inner loop can be considered the days 

of that month. When a month starts, counting the days restarts and continues 

until all the month’s days are counted. When day counting ends, we go back to 

the outer loop and change the month. 

In order to complete missions, Ruby is required to drive uphill or downhill and 

perform missions on different plains. Ruby can identify driving uphill/downhill 

driving by using data from the x-axis gyro: the gyro will return positive values 

when driving uphill and negative values when driving downhill. Driving on a plain 

will show 0 on the x-axis. Ruby can turn her sensors using the “get sensor 

rotation” block we introduced in pack 9 “Radar Missions” so she can notice 

obstacles ahead, for example. 

As missions become more complicated and the students’ knowledge increases, 

there are (as in real life) many ways to solve a problem or complete a mission. 

The students can use whatever they like - sensors, signs, objects in the 

environment, etc. in order to complete the mission. The teacher’s solution 

suggests one option of many and is not necessarily the only option. 

| Repeat Again 



 

 
56 

Session Plans 

  

Resources 

 
Slideshows - within the pack 

Teacher’s Notes - Repeat Again 

Get Gyro Axis block - Knowledge Base article (note x-axis) 

Pacing Guidelines 

 Step Description Timing Links/comments 

1 
Go through 

Repeat Again Part 

1 slideshow 

10 minutes Nested loops 

2 
Missions 1-2 15 minutes Hilltop Trees  

Trees on Hills 

3 
Go through 

Repeat Again Part 

2 slideshow 

10 minutes X-Gyro 

4 
Missions 3-4 

 

20 minutes Downhill Drive Through 

Downhill Drive Two 

5 
Go through 

Repeat Again Part 

3 slideshow 

10 minutes Multiple nested loops 

Color-based decision making 

6 
Missions 5-6 15 minutes Hilltop Parking 

Hilltop Mayhem 

7 
Lesson Summary 5 minutes Class Conclusion Questions 

| Repeat Again 

https://coderz.zendesk.com/hc/en-us/articles/360010685399-Get-Gyro-Axis-Block


 

 
57 

Session Plans 

 

 

 

 

 

 

 

 

 

  

Tips 

 
 Go through the presentation (and teacher’s notes), missions, and solutions 

prior to the session. 

Review the available resources suggested above. 

This lesson probably will take more than 45 minutes. Don’t rush things, take 

your time. If students do not complete all the missions required, either allow 

them to complete it from home or reserve some time at the beginning of the 

next session. 

If your students complete the missions before the class ends you can ask them 

to present their solutions to the class and discuss the efficiency and 

compatibility of their solution. Alternatively, you can proceed to the next 

session. 

Class Conclusion Q&A 

  Questions Answers 

1 
What are nested loops and 

when are they used? 

Nested loops are loops within loops. For 

example an outer repeat loop might repeat 

for 3 times, while the inner (nested) loop 

holds code that drives the robot in a square 

shape by repeating a ‘drive forward, turn 90 

degrees right’ sequence 4 times. The result 

will be the robot driving in a square shape 3 

times. 

2 
Describe how the gyro 

sensor is used to 

detect driving uphill. 

The gyro sensor’s x-axis shows positive 

degrees (above 0) when Ruby is driving uphill. 

By using a Get Gyro Axis block set to the x 

axis and checking if its value is greater than 

0, we can be sure we are driving uphill. 

| Repeat Again 



 

 
58 

Session Plans 

 

 

 

 

 

Lesson 12: Magnetic Manipulation 
Meet Ruby's Magnetic ARM 

 

 

 

 

 

 
 

 

 

 

  

Learning Goals 

By the end of this lesson students will: 

 
Meeting Ruby’s magnetic arm 

Applying what was learned so far and carrying out challenges and missions 



 

 
59 

Session Plans 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Resources 

 
Slideshows - within the pack 

Teacher’s Notes - Magnetic Manipulation 

Magnet Arm Position Block - Knowledge Base article 

Magnet Arm Cargo Connected Block - Knowledge Base article 

Get Magnet Arm Position Block - Knowledge Base article 

Magnet Arm Release Block - Knowledge Base article 

Description 

 
Lesson 12 introduces Ruby’s magnetic arm. Ruby can raise and lower the arm, 

hold magnetic objects, and release them. The arm even has a sensor that 

detects if an item is magnetized to it. 

In this session Ruby will use her arm to rearrange objects in her surroundings: 

move cargo out of the way, use cargo to fill in pits and gaps in the road, or even 

press/release buttons which activate rising bridges. To succeed in the mission, 

the students will have to use all they have learned so far: driving skills, all kind of 

sensors (touch, color, distance or gyro), use variables, loops, math, and logic 

operators etc. 

| Magnetic Manipulation 

https://coderz.zendesk.com/hc/en-us/articles/360010704659-Magnet-Arm-Position-Block
https://coderz.zendesk.com/hc/en-us/articles/360010703139-Magnet-Arm-Cargo-Connected-Block
https://coderz.zendesk.com/hc/en-us/articles/360010587620-Get-Magnet-Arm-Position-Block
https://coderz.zendesk.com/hc/en-us/articles/360010705239-Magnet-Arm-Release-Block


 

 
60 

Session Plans 

 

 

 

  

Pacing Guidelines 

 Step Description Timing Links/comments 

1 
Go through 

Magnetic 

Manipulation Part 

1 slideshow 

10 minutes Meet Ruby’s Arm 

2 
Missions 1-3 20 minutes Meet the Magnet Arm  

Wrestling Ruby 

Pit stop 

3 
Go through 

Magnetic 

Manipulation Part 

2 slideshow 

5 minutes Introduction to missions 4-5 

X-Axis Gyro, color-based decisions 

4 
Missions 4-5 15 minutes A Block Too Far  

Blocking Up the Bridge 

5 
Go through 

Magnetic 

Manipulation Part 

3 slideshow 

10 minutes Introducing mission 7-6  

Repeat loops, variables, operators, 

color-based decisions 

6 
Missions 7-6  20 minutes The Buttonless Pit 

Magnet Slide 

7 
Lesson Summary 5 minutes Class Conclusion Questions 

Tips 

 
Go through the presentation (and teacher’s notes), missions, and solutions prior 

to the session. 

Review the available resources suggested above. 

This lesson probably will take more than 45 minutes. Don’t rush things, take 

your time. If students do not complete all the missions required, either allow 

them to complete it from home or reserve some time at the beginning of the 

next session. 

If your students complete the missions before the class ends you can ask them 

to present their solutions to the class and discuss the efficiency and 

compatibility of their solution. Alternatively, you can proceed to the next session. 

| Magnetic Manipulation 



 

 
61 

Session Plans 

  

Class Conclusion Q&A 

  Questions Answers 

1 
After raising or lowering Ruby’s 

magnetic arm with a “Magnet 

arm position block”, why 

should we use a “wait until” 

block with the “Get magnet 

arm position” block and 

compare it to “up” / “down”? 

It is good practice to wait until a physical 

action (such as raising/lowering a 

mechanical arm in this case) has 

completed before driving. This will 

ensure that Ruby’s arm and her magnetic 

load do not bump into objects, which 

might happen if she drives while still 

raising or lowering her arm. 

2 
In the mission Magnet Slide, 

does it matter if we turn to the 

button on the right or on the 

left first? And accordingly – 

should we declare our variable 

to be 90 or -90 degrees at the 

start of our code? 

No, as long as we start with one and 

finish with the other. 

3 
How did we switch direction 

after the first iteration of the 

loop? 

By using a mathematical operator to set 

the direction variable to itself in the 

opposite direction – by multiplying it by -

1. So, if we declared the variable’s value 

to be 90 degrees at the start of the code, 

then at the end of the loop we will toggle 

the value of the variable to -90. If we 

declared the value to be -90 degrees at 

the start, this action will toggle the value 

to +90. 

| Magnetic Manipulation 



 

 
62 

Session Plans 

 

 

 

 

 

Lesson 13: Line Following Logic 
Using the color sensor and proportional control to follow a line 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Learning Goals 

By the end of this lesson students will: 

 
Line following logic 

On-off control / Two-state control 

Three-state control 

Proportional control 

The color sensor - reflection mode 

Description 

 
The goal of Lesson 13 is to teach on-off control and proportional control. These 

two methods are used for line following. 

Lines marked on the ground help Ruby navigate. We have already used colored 

lines for navigation in previous lessons – according to these marks, Ruby knew 

when to stop or turn. In Lesson 13 Ruby will use such marks to accurately drive 

along routes that consist of straight lines, smooth curves, and sharp turns. Ruby 

will drive on the edge of the colored line so she can differentiate between the 

line and background (the floor) colors or light reflection. 

 



 

 
63 

Session Plans 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

Description 

 
At first, Ruby will follow the line using two-state control: she will drive slightly to 

the left and slightly to the right, using her color sensor and correcting herself 

continuously. This method will make Ruby drive slowly and in a funny (zigzag) 

but accurate way. 

Using the color sensor in reflection mode will enable Ruby to define more 

states, as reflection mode returns numerical values with a range of 0-100 

values. That range enables Ruby to react differently to different values. Ruby will 

calculate error values, i.e. the distance from a desired value (threshold) and 

react accordingly. 

Threshold is calculated as the mean of line and background reflection values. 

Error is the reflection value minus the threshold value. If we use the left-side 

color sensor and drive along the left edge of a white line, negative error values 

will indicate that Ruby drove too far to the left (onto the floor) and positive error 

values will indicate that Ruby drove too far right (onto the white line). The 

correction will be proportional to the error - the correction will be bigger as the 

error increases and vice versa. 

Proportional control will improve the way Ruby drives along the line - it will be 

much smoother. Still, Ruby cannot drive fast on different shapes of roads. To 

make driving efficient, Ruby will be assisted by colored marks that will signal if 

the road is smooth or has sharp turns ahead. 

Resources 

 
Slideshows - within the pack 

Teacher’s Notes – Line Following Logic 

Color Sensor - Knowledge Base article 

Get Color Name/Reflection Value Block - Knowledge Base article 

| Line Following Logic 

https://coderz.zendesk.com/hc/en-us/articles/115003082289-The-Color-Sensor
https://coderz.zendesk.com/hc/en-us/articles/360010688319-Get-Color-Name-Reflection-Value-Block


 

 
64 

Session Plans 

  

Pacing Guidelines 

 Step Description Timing Links/comments 

  1 
Go through Line 

Following Logic 

Part 1 slideshow 

10 minutes Using color sensor to identify the 

edge of a line 

On-off control / two-state control 

  2 
Missions 1-3 10 minutes Going Green  

Green Again 

Question Marked Code 

  3 
Go through Line 

Following Logic 

Part 2 slideshow 

5 minutes Color sensor- reflection mode 

 

  4 
Mission 4 15 minutes Following White 

  5 
Go through Line 

Following Logic 

Part 3 slideshow 

5 minutes Three-state control  

  6 
Mission 5 15 minutes Go to the Light 

  7 
Go through Line 

Following Logic 

Part 4 slideshow 

 Continuous proportional control 

  8 
Mission 6  Ruby on the Road 

  9 
Go through Line 

Following Logic 

Part 5 slideshow 

 Color sensor colored marks along 

the road 

10 
Missions 7-10  Sharp Turn Situation 

Traffic Corner 

Diagonal Drive 

Traffic Circle Trial 

11 
Lesson Summary 5 minutes Class Conclusion Questions 

| Line Following Logic 



 

 
65 

Session Plans 

 

 

 

 

 

 

  

Tips 

 
Go through the presentation (and teacher’s notes), missions, and solutions prior 

to the session. 

Review the available resources suggested above. 

This lesson probably will take more than 45 minutes. Don’t rush things, take 

your time. If students do not complete all the missions required, either allow 

them to complete it from home or reserve some time at the beginning of the 

next session. 

If your students complete the missions before the class ends you can ask them 

to present their solutions to the class and discuss the efficiency and 

compatibility of their solution. Alternatively, you can proceed to the next session. 

Class Conclusion Q&A 

  Questions Answers 

1 
Describe what is two-state 

control and how we used 

it with Ruby in the first few 

missions. 

Two-state control is a method in which the 

robot drives in a zigzag way along the edge of 

a line, riding the edge between the colored 

line and the floor. The two states are the 

correct color (the color of the line, like green 

or white) or the wrong color (the floor). Ruby 

does this by checking if the color her sensor 

sees is above or below a threshold value, 

which is the mean number between the color 

of the line and the color of the floor’s 

respective reflection values. 

2 
Explain why we followed 

the edge of the line and 

not the middle of the line, 

for example. Does the 

position of the sensor 

matter? (Left / right / 

center color sensor) 

If Ruby has left the line behind completely, or 

is completely on the line itself so that both 

her sensors see only the floor color, then 

Ruby can’t know if she is on the floor to the 

left or the line or the right of the line. She will 

not know in which direction to turn in order to 

correct course and stay along the line.  

| Line Following Logic 



 

 
66 

Session Plans 

 

 

 

 

 

  
 3 

What are the advantages 

of using the color sensor 

in the reflection mode over 

color detection? 

For this reason, it is better to focus on one of 

the edges of the line, and according to which 

edge, we will use the readings from the 

respective side sensor: if we follow the left 

edge of the line – we will use the left side 

color sensor. If we follow the right edge of 

the line – right side color sensor. This way, 

the very moment Ruby leaves the edge of the 

colored line and moves onto the floor, she 

will correct herself by driving slightly in the 

opposite direction. 

 4 
Explain the benefits of 

continuous, proportional 

control over a small 

number of states control 

(two-state or three-state 

control). 

The color name mode allows for only 9 color 

values, as string values ("Black" , "White" , 

"Red" , "Yellow" , "Green" , "Cyan" , "Blue" , 

"Magenta" , "Brown"). This limited number of 

options also limits the code. By using 

reflection value mode, we can use 100 

different numerical reflection values and thus 

achieve much greater precision, as numerical 

values can also be manipulated and used in 

mathematical equations (while string values 

cannot). This is ideal for all types of control, 

and especially for proportional control.  

5 
Describe what the colors 

on the floor marked for 

Ruby in the last few 

missions, and why does 

Ruby need these signs. 

Proportional control is better because it is a 

closed-loop system which a very high degree 

of control and precision. If we program it 

correctly, the correction will always be as 

small or as big as the error is – meaning, that 

usually the code will ‘catch’ the error sooner 

rather than later, and thus the error will be 

small, and the correction also small. This will 

make for a much cleaner, smoother drive for 

Ruby, and in real-life engineering, will also 

conserve energy. 

| Line Following Logic 



 

 
67 

Session Plans 

 

 

 

 

 

Lesson 14: A Hard Block Life 
Using encoder, gyro and reflection values for aligning according to marks on the floor 

 

 

 

 

 

 
 

 

 

 

 

  

Learning Goals 

By the end of this lesson students will: 

 
Encoders and their utility for distance measurement 

Recalling the Y-axis Gyro 

Aligning to a line using two color/light sensors and proportional control 

Proportional gain 



 

 
68 

Session Plans 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

Description 

 
Lesson 14 introduces the encoders and how to use them for measuring 

distance. An encoder is an electromechanical device that converts the angular 

position of the motor axle to an electrical signal that is used for speed and/or 

position control. Ruby will use the encoder to remember positions in her 

environment. Resetting the encoder marks a position as a reference point. If 

Ruby drives forward and wants to return to this reference point, she should drive 

back until the encoder shows zero. 

In Lesson 14, Ruby needs to drive on narrow, bumpy roads. This can be done 

successfully only if Ruby stays aligned straight ahead. Using the Y-axis gyro and 

proportional control will enable Ruby stay aligned: using the Y-axis gyro Ruby 

will measure the deviation from driving straight ahead (deviation from Y=0) and 

using proportional control in the code will straighten Ruby’s driving trajectory. 

The correction will be proportional to the error (deviation). 

The last subject that Lesson 14 introduces is aligning to a straight line using 2 

color sensors in reflection mode. As we saw in previous lessons, marks on the 

ground can help us navigate. This time, straight lines will help us turn 

accurately. Ruby will drive until she detects a line in one of her side color 

sensors (left or right). When the line is detected, Ruby will use proportional 

control to align herself to the line: she will turn slowly towards the direction of 

the sensor which detected the line until the light reflection value of both sensors 

is equal. That means the alignment is completed. It is important that the 

students understand the point is not necessarily both color sensors are aligned 

to the white line - the point is that both sensors detect the same value. It will 

probably be the edge of the line, so a mean of line and background reflection 

values. Instead of checking if both sensors sense a specific numeric value 

(such as 67), we will check if the values of both sensors are equal. 

| A Hard Block Life 

https://en.wikipedia.org/wiki/Angle


 

 
69 

Session Plans 

   

Pacing Guidelines 

 Step Description Timing Links/comments 

1 
Go through A 

Hard Block Life 

Part 1 slideshow 

10 minutes Using encoders to measure exact 

movement and positions 

2 
Missions 1-2 10 minutes Decoding Encoders 

Encoded Stroll 

3 
Go through A 

Hard Block Life 

Part 2 slideshow 

15 minutes Y-axis gyro 

Proportional control and gain 

4 
Missions 3-5 15 minutes Rocky Road 

Ruby and the Treacherous Heights 

Ruby the Roving Robot 

5 
Go through A 

Hard Block Life 

Part 3 slideshow 

15 minutes Aligning to colored lines 

Comparing reflection values 

Logic operators 

6 
Missions 6-7 15 minutes Adjusting Left 

Reflection Redirection 

7 
Go through A 

Hard Block Life 

Part 4 slideshow 

15 minutes Putting it all together 

8 
Missions 8-10 20 minutes Downhill Tumble 

Slope Slide Correction 

Narrow Maneuvers 

9 
Lesson Summary 10 minutes Class Conclusion Questions 

Resources 

 
Slideshows - within the pack 

Teacher’s Notes – A Hard Block Life 

The Gyro sensor - Knowledge Base article 

Get Gyro Y block - Knowledge Base article 

Color Sensor - Knowledge Base article 

Get Color Name/Reflection Value Block - Knowledge Base article 

| A Hard Block Life 

https://coderz.zendesk.com/hc/en-us/articles/115003083109-The-Gyro-Sensor
https://coderz.zendesk.com/hc/en-us/articles/360010685079
https://coderz.zendesk.com/hc/en-us/articles/115003082289-The-Color-Sensor
https://coderz.zendesk.com/hc/en-us/articles/360010688319-Get-Color-Name-Reflection-Value-Block


 

 
70 

Session Plans 

  

Class Conclusion Q&A 

  Questions Answers 

1 
Why should we use variables 

in our code in the missions  

of this pack? 

When using two- or three-state control, 

and especially whenever using 

proportional control, we must use 

variables for our speed values as well as 

our error and correction / gain values, 

since they continuously change. That is, 

after all, the meaning of proportional 

control: correction values change 

according to/in proportion with error 

values. 

2 
What coding ‘trick’ did we  

use in the mission “Ruby the 

Roving Robot” in order to 

keep our code short and 

efficient?  

Repeat loops. 

3 
In “Adjusting Left” and 

“Reflection Redirection” 

missions, why did we only 

wait until the values of the 

two-color sensors were  

equal to each other’s, instead 

of waiting for them both to 

equal the color/reflection 

value of the white line? 

We can wait for the values to equal the 

color/reflection value of the white line, but 

that will require more time, and more 

corrections, and thus more energy, and 

possibly longer code as well. By waiting 

only until the two sensor’s values are 

equal, we make sure that Ruby is aligned 

well enough to the line, and that will 

happen quicker and with less energy. 

| A Hard Block Life 



 

 
71 

 

Frequently Asked Questions 
 

 

 1 
What should I do 

before the first 

lesson? 

Make sure the computers that will be used meet the 

minimum requirements to run CoderZ. 

Activate your CoderZ teacher account, create a class, 

and invite students to your class. If you can have 

them complete the sign-in process before the first 

session, it will save time. 

Review this Teacher’s Guide and complete the relevant 

missions for the first session. 

2 
Do we need special 

computers or 

software? 

 

CoderZ is only compatible with Chrome browser. It can 

be downloaded here. 

Users should make sure webGL is enabled. If it is not 

enabled, here is how to enable it. 

3 
How can I add students 

to my class? 

Here is a support article with instructions for adding 

students to your classes is in our Knowledge Base. 

4 
How do I get help? Teachers have full access to mission solutions, 

support articles and support staff. You can contact 

support@gocoderz.com with any technical issues 

5 
Can my   students  

access this from home? 

Yes, as long as they have an internet connection and 

their computers meet the minimum requirements. 

6 
What should I do if  

my students cannot 

finish all the 

assigned missions 

during class time? 

We recommend that they finish the rest as homework. 

Teachers can also dedicate more lessons to allow 

students to complete all the missions during class. 

7 
How can I grade my 

students? 

Teachers can use the Class Heat Map and Student 

Progress Reports to view their students’ progress, 

including total missions completed, average attempts, 

score and more. Check this video tutorial to learn more. 

8 
Do you have any 

additional 

curriculums? 

Yes! Python Gym is the continuation of Cyber Robotics 

102. We are always updating our content, so have a look 

at our website or at this article in our Knowledge Base. 

9 
How can I provide 

feedback? 

Use the purple Help Widget or contact us at 

feedback@gocoderz.com. 

4 

https://coderz.zendesk.com/hc/en-us/articles/213010989-What-are-the-Minimum-Requirements-for-Running-CoderZ-
https://coderz.zendesk.com/hc/en-us/articles/115003100665-How-Do-I-Add-A-Class-Play-
https://coderz.zendesk.com/hc/en-us/articles/115004027945-How-Do-I-Add-Students-Play-
https://www.google.com/chrome/
https://get.webgl.org/
https://coderz.zendesk.com/hc/en-us/articles/214247165-WebGL-Not-Enabled
https://coderz.zendesk.com/hc/en-us/articles/115004027945-How-Do-I-Add-Students-Play-
https://coderz.zendesk.com/hc/en-us
mailto:support@gocoderz.com
https://coderz.zendesk.com/hc/en-us/search/click?data=BAh7CjoHaWRsKwhyJl7SUwA6CXR5cGVJIgxhcnRpY2xlBjoGRVQ6CHVybEkiTmh0dHBzOi8vY29kZXJ6LnplbmRlc2suY29tL2hjL2VuLXVzL2FydGljbGVzLzM2MDAxMTY3MTE1NC1DbGFzcy1IZWF0LU1hcHMGOwdUOg5zZWFyY2hfaWRJIiliYmU4ZGY5My1iZWNhLTQ0OWQtYWIxOS1hODEyYjhkMzA2MTkGOwdGOglyYW5raQY%3D--047c2dee0aa2df0950903eb396603bec9b810085
https://coderz.zendesk.com/hc/en-us/articles/360011828713-Student-Progress-Report
https://coderz.zendesk.com/hc/en-us/articles/360011828713-Student-Progress-Report
https://www.youtube.com/watch?v=I2ULJ_7ucf4&index=6&list=PL5yCZmj_fAdvNsNGat1pAwQX3J04-3PEL&t=0s
https://coderz.zendesk.com/hc/en-us/articles/360010258953
mailto:feedback@gocoderz.com


 

 
72 72 

 

Credits  
 

 

 

 

 

 

 

 

 

 

 

 

 

 

5 
Course Materials 

Nissim Hania 

Gila Klein 

Nitzan Green 

Missions Development and Design 

Nissim Hania 

Daniel Ho 

Ofer Zivony 

CoderZ Learning Environment 

Ahmed Kawasmi 

Mohammad Qashua 

Maayan Blum 

David David 

Quality Assurance 

Nir Eini 

Support 

Justin Almeida 

Trevor Pope 

 



 

 
73 73 

Appendix - Teacher’s Notes 
 

Appendix - Teacher’s Notes 
  

 

Session 1: Plains and Hills 1 

Part # Slide # Notes 

1 
15 Ask the students: what types of motors do you know?  

16 Steam engine – uses steam to push a piston back and forth inside a 
cylinder. 

Internal combustion engine – uses fuel like gasoline or diesel. 

Electric engine – uses electricity as its fuel. 

Jet engines – a type of Internal combustion engine that uses fast-
moving jets of air. 

Ask the students what type of motor they think powers cars and buses 
nowadays. 

18 Ask the students what type of machines they know of which use 
motors. 

Examples:  

Cars, washing machine, vacuum cleaner, refrigerator, toy cars, 
airplanes, ships, cars, motorcycles, electric bicycles, etc.  

Explain that not all motors are the same shape or size. Some motors 
can be very small, for example the ones used to power toy cars or other 
toys; while a spaceship’s motor can be as big as a house and weigh 
several tons. 

19 Ask the students what type of machines they know of which use 
motion. 

Examples:  

A washing machine needs to spin a drum around and around to wash 
our clothes. 

A vacuum cleaner power an air pump to create a vacuum. And 
automatic vacuums like Roombas need to drive around to clean the 
house. 

Ships need to move through the ocean.  

Motorcycles, bicycles, cars, and trucks need the wheels to spin to drive 
forwards. 

  

6 



 

 
74 74 

Appendix - Teacher’s Notes 
 

  

Part # Slide # Notes 

1 

20 At the beginning of course the Ruby will not have its arm/ forklift yet. It 

will be added (and used) later in the course. 

21 Explain that for the first few missions, we will work them out together.  

As we advance in the course, the students will get some time to try the 

missions themselves before receiving the solution. 

23 Movement > “set motor power” block > drag and snap to “program 

start” block. 

27 Have the students play around for a little bit (5 minutes) with the 

different power values in an empty scene. 

Ask them if they have used the same value (same number, same sign) 

for both left and right motors 

And if not – what happened?  

The robot didn’t drive straight! Maybe it curved, or even spun in place! 

Remind them that in order for the robot to drive straight (whether 

forward or backward) both left and right motors must turn in the same 

direction (positive/negative value in both left and right data block) and 

at the same power (same value in both left and right data block) 

2 

1 Explain to the students about acceleration:  

Constantly giving the robot the same amount of power does not 

necessarily mean it will continue driving at the same speed. The 

longer the robot is driving, the more momentum it picks up, and the 

faster it drives.  

Of course, it can’t exceed the maximum speed the robot is physically 

capable of, which is 100% power. But even when starting at 50% 

power, eventually the robot will accelerate to 100% velocity. 

2 Mention that in the HUD we can see the robot’s velocity both rising 

and falling 

3 Explain that touching the container will cost us 5 batteries, so we need 

to make sure we stop before we touch it. 

4 Explanation about “wait” block is in next slide. 

Session 1: Plains and Hills I 

 



 

 
75 75 

Appendix - Teacher’s Notes 
 

 

 

  

Part # Slide # Notes 

2 

5 Control Flow > “wait” block > drag and snap to “set power” block 

Explain: if the previous command in the program was to drive forward, (set 

power block) then the robot will continue to perform the last command 

(driving forward at XX power) and wait for 2500 milliseconds (2.5 seconds) 

before it moves on to the next command, whatever it is. 

The end result? The robot will drive forward for 2500 milliseconds. 

Explain that 2500 milliseconds is just a guess at this point – it might be too 

much. We’ll have to test and see if we might need less or more time. 

Run the simulation.  

The robot will overshoot the target and hit the obstacle. Try a different 

(smaller) value for the “wait” block and see if that works. 

6 Explain to the students that touching the bolt will cause loss of batteries. 

7 Movement > “break until stop” block > drag and snap to “wait” block  

Explain that this is the same way that our parents’ cars brake: pushing the 

brake pedal means we’ve taken our foot off the gas pedal (that’s stopping 

the power to the motors) and also that the car’s brake engages, and applies 

power on the wheels or the wheels’ axis in order to stop it from turning. 

8 Explain to the students that energy takes time to dissipate, which is why the 

robot will continue drifting forward even after the motors stop powering the 

wheels. Have them look at the HUD in the gif – explain that it takes time for 

the velocity to drop to 0 (full stop). 

Explain that the faster the robot is going (higher velocity), the longer it will 

take to stop fully. 

Human drift exercise: ask a student to run a few meters in the class in your 

direction and pass near you. When he is just in front of you tell him to stop, 

of course he will not stop next to you, it takes time for him to stop. The 

distance that he passes from the moment he starts to stop until he stops 

fully shows the same idea of the influence of the momentum. 

Session 1: Plains and Hills I 

 



 

 
76 76 

Appendix - Teacher’s Notes 
 

 

 

  

Part # Slide # Notes 

2 

9 Explain that trial and error, making little changes, and testing again 

and again is part of the engineering and STEM process! 

10 Have the students play around for a little bit (5 minutes) with the 

different power values in an empty scene. 

Ask them if they have used the same value (same number, same 

sign) for both left and right motors 

And if not – what happened?  

The robot didn’t drive straight! Maybe it curved, or even spun in 

place! 

Remind them that in order for the robot to drive straight (whether 

forward or backward) both left and right motors must turn in the 

same direction (positive/negative value in both left and right data 

block) and at the same power (same value in both left and right data 

block). 

3 

1 Ask the students what they think. If one of them suggests driving 

backward and only then forward – praise them and let them 

complete the mission.  

If not, explain the solution: 

This is exactly why we’ve learned how to drive in both directions – 

backward and forward. 

For this mission we will have to use both directions – each time we 

will use a combination of power block and wait block, with one 

“brake until stop” block between the back and forth. 

Explain that the mission will be completed the moment we collect all 

the batteries, so for the ‘forth’ part we don’t even need a “wait” block 

or a “brake” block. 

Session 1: Plains and Hills I 

 



 

 
77 77 

Appendix - Teacher’s Notes 
 

 

 

 

 

  

 

Part # Slide # Notes 

3 

2 Have the students play around for a little bit (5 minutes) with the 

different power values in an empty scene. 

Ask them if they have used the same value (same number, same 

sign) for both left and right motors. 

And if not – what happened?  

The robot didn’t drive straight! Maybe it curved, or even spun in 

place! 

Remind them that in order for the robot to drive straight (whether 

forward or backward) both left and right motors must turn in the 

same direction (positive/negative value in both left and right data 

block) and at the same power (same value in both left and right data 

block) 

3 In the next mission we will have to deal with driving uphill! 

4 Let the students complete the following missions of the Pack: Plains 

and Hills 

Driving Uphill 

Giddy Up 

NOTE: Do not explain how to solve the missions. The idea is to let 

the students experience the uphill slopes and see if there is or isn’t 

enough power to drive up the slope without driving backward to gain 

momentum.  

Explain that in the next lesson we will learn about gravity, mass, and 

weight, and understand how to solve these missions using physical 

concepts. 

Session 1: Plains and Hills I 

 



 

 
78 78 

Appendix - Teacher’s Notes 
 

 

 

Session 2: Plains and Hills 2 

 
  Part # Slide # Notes 

1 
2 Remind the students of what we did in the previous lesson: 

We learned about motors and motion 

We learned about our robot’s motors and how to use the “power” block 

to drive the robot forwards and backwards 

We completed two missions. 

3 Ask the students if anyone had any difficulty or has any questions 

before we learn anything new today. 

9 Play the video – explanation on forces and movement 

10 If further explanation is needed: 

The force of gravity is affected by the mass of the bodies and their 

distance from each other and is more acutely felt when the bodies are 

large (like planets, as opposed to apples. This is the reason why it looks 

like only the Earth is pulling the apple to itself, when in fact the apple is 

pulling the Earth toward it too – just with a much weaker force).  

Gravitational force was formulated by Sir Isaac Newton, who 

determined that any two bodies with mass are attracted to one another 

directly proportional to their masses, and inversely proportional to the 

square of distance between them. 

11 Ask the students: do all objects fall to the ground?  

The answer is YES. Every object on Earth is drawn down to the ground 

by gravity, unless some other force is holding it up. 

Apples, for example, are connected by their stems to the tree’s 

branches, which are holding them up.  

Even then, the apples are pulled downward toward the ground – just not 

strongly enough to fall. But this is the reason they hang down from the 

tree, rather than facing up or drifting off towards the sky. 

And once the stem or the branch breaks – the apple will fall. 



 

 
79 79 

Appendix - Teacher’s Notes 
 

 

  

Part # Slide # Notes 

1 

15 Like in the mission “rolling uphill”, the robot needs to be further 

away from the slope in order to have enough time driving forwards 

and gaining speed – enough speed to allow it to climb up the hill 

16 Have the students complete the following missions (10-15 

minutes): 

Pack: Plains and Hills 

Rolling Uphill 

Giddy Up 

2 

2 On a plain, the floor/ground stops gravity from pulling the robot to 

the ground anymore. The robot doesn’t need to exert much power 

to move forwards. 

On a moderate slope, gravity’s pull on the robot is stronger, but the 

motor’s power is still enough to climb. 

On a steep slope, gravity’s pull is even stronger – the motor’s power 

will not be enough. We will need to compensate for power with 

speed! 

If our surface is entirely vertical, then even with a lot of speed we 

will not be able to climb for more than a few seconds. Without 

alternative power (like a rocket!) we will not be able to climb at all. 

3 Let the students try these missions on their own. 

Ask them, what happens when the robot is pushing a heavy weight? 

Does this change the robot’s speed? Does this change the way the 

robot should act?  

4 Heavy Mass 

Building Up Weights 

Weight Lifting 

Session 2: Plains and Hills II 

 



 

 
80 80 

Appendix - Teacher’s Notes 
 

 

 

Session 3: Cruise Control 

 

  
Part # Slide # Notes 

1 
4 Explain that the longer we drive, and the more we accelerate, the harder 

it will be to brake, and the longer time we will need in order to brake 

completely and make a full stop. 

6 Break-down / demonstration in next slide 

7 Ask the students if they remember specific places that have speeds 

limits. 

Examples: the street they live on will probably have a strict speed limit 

such as 40 or 50 kph. 

Densely populated areas like near shopping centers, pedestrian walks, 

and schools might have even stricter speed limits. 

Interstates and highways have a higher speed limit, like 90 kph. The 

Autobahn, the highway in Germany, has a speed limit as high as 130 

kph! 

9 Ask the students: if the bad containers are moving, and we are in 

between them, how can we drive forward without touching the block 

before us or without the block behind us catching up with us and 

touching the robot from behind? 

10 Open the “Speed Limit” mission and turn on Manual Control. 

Open the HUD and open the VELOCITY value. 

Drive the robot forward and try to maintain a steady speed. 

Have the students note the best velocity in the HUD. 

Explain that using the up/down arrow keys with manual control is like 

using a “power” block – the robot accelerates, and it’s hard to maintain 

a steady speed. 

11 Have the students complete the following missions (MAX 3 minutes) 

Pack: Cruise Control 

Speed Limit – using manual control. 



 

 
81 81 

Appendix - Teacher’s Notes 
 

 

 

 

  
Part # Slide # Notes 

2 
1 Explain that many cars nowadays have an automatic Cruise Control 

option, which makes it easier for drivers to maintain steady speeds. 

The driver must bring the vehicle up to speed manually and use a 

button to set the cruise control to the current speed, and the system 

automatically turns off if the driver presses on the brake pedal. 

This option is best used in long stretches of road, like interstate 

highways. 

5 Explain the examples: 

Streetlights – the city sets a specific time of day for the street lamps 

to turn on and off. Even if the day is especially dark and cloudy, the 

streetlights will not turn on until the time they are programmed to 

arrives. 

Irrigation systems – again, the city will set a specific time of day for 

the water sprinklers to turn on and off in the park. Even if the day is 

very hot and dry, the system operates automatically and waters the 

park for a set length of time, even if it is not enough for the flowers 

and trees. It works the other way around too – even if it is pouring 

rain, and the garden does not need to be watered – the sprinklers will 

still turn on, because they do not know it is raining. They just know 

they were told to work for a specific length of time, at a specific time 

of day. 

A toaster – once you set the level of toasting you want, the toaster 

will toast your bread for a specific amount of time, and only once 

that time is up – the toast will pop up. Even if the toast burns – the 

toaster will not stop working before its set time. 

Explain that these systems are usually simple and cost less to 

design and maintain. 

Session 3: Cruise Control 

 



 

 
82 82 

Appendix - Teacher’s Notes 
 

  

Part # Slide # Notes 

2 

6 Ask the students to brainstorm ideas how to turn each of the open 

loop systems from the previous slides to closed loop system. Most 

answers will require sensors of some sort: 

Street lights – instead of setting a specific time of day for the street 

lamps to turn on and off, installing a light sensor would turn it into a 

closed loop system: whenever it gets dark, the street lights will turn 

on. This could be at 7pm, or at 6pm, or even at 2pm if it is a stormy 

winter day. 

Irrigation systems – instead of setting a specific time of day for the 

water sprinklers to turn on and off in the park, installing a moisture 

sensor to determine when the soil is dry or wet would make the 

system more sophisticated. The system would sense when the soil is 

dry and turn on the water, until the sensor recognizes that the soil is 

wet to a degree the city decides, and only then will the system shut off 

the water. If it has rained today, the moisture sensor will recognize 

that the soil is already wet, and so the sprinkler system doesn’t need 

to be turned on at all. 

A toaster – any ideas? Play the video for an explanation. 

7 Ask the students which of these we need to build in CoderZ in order to 

drive forward and avoid touching the bad containers in front of and 

behind the robot: an open loop or a closed loop? 

8 The answer is: a closed loop, because we need the robot to check its 

velocity(speed) and act according to it, change its behavior according 

to that data (velocity). 

9 Explain that Pseudo code is an easy way to plan our code, using 

normal words rather than blocks. Later we will translate our 

statements into blocks of code in CoderZ.  

Write these steps out on the classroom board so that the students can 

still see them after we move on from this slide. 

OR 

Ask one of the students to copy these steps to their notebook and 

then read them out to the class later. Explain that we will refer to these 

steps while we are building our closed loop. 

Session 3: Cruise Control 

 



 

 
83 83 

Appendix - Teacher’s Notes 
 

  

Part # Slide # Notes 

2 

10 Explanation about If/Else block is in next slide 

13 Explain that we need an If/Else loop, to continuously check the 

robot’s velocity, compare it to a certain value (the speed limit), and 

act accordingly – 

If the answer to the condition (in this slide, it is a comparison) is 

YES, the robot needs to act a certain way (this is the “do” segment 

of the loop);  

Else (in other words, if the answer to the comparison is NO) the 

robot needs to act in a different way (the “else” segment) 

14 Explain that a comparison block is already in place as our condition 

for the if/else block.  

We want to compare the value of the robot’s velocity (data from a 

sensor that might be changing all the time) to a specific value (the 

speed limit – this is a constant value and doesn’t change) 

But we don’t want to compare them as equals, we want to see if 

one of them is lower (less) than the other.  

So, we need to change the equals sign to a < (less than) sign. 

And then we can place the two blocks on either side of the sign. 

16 Explain that it’s best to not drive at full speed (100%) but to start 

out at half-speed (50%) 

17 Explain that if we were driving a car, we’d take our foot off the 

acceleration pedal (gas) therefore cutting the power to the motor. 

(0% power to both motors) 

We might also brake, but for now 0% power is enough. 

Session 3: Cruise Control 

 



 

 
84 84 

Appendix - Teacher’s Notes 
 

 

  

Part # Slide # Notes 

2 

19 Have the students complete the following missions (MAX 3 minutes) 

Pack: Cruise Control 

Cruise Control 

NOTE: the code is not yet complete. It is missing a “repeat forever” loop.  

In its current state, the code makes the robot drive forward 

indefinitely, because it doesn’t loop back to the condition after the 

first run. 

The idea is for the students to figure it out on their own that the loop 

element is missing. It is step 4 in the pseudo code. 

If one of the students catches onto this and says, “wait, we forgot 

step 4!” then praise them and say we will take care of it now. If not, 

try to lead up to it, then move on to next slide. 

20 Ask the students: which step did we forget? 

The answer is: Step 4: repeat until we reach the target! 

Explain that without a loop to make the code repeat itself, the robot 

will only perform the comparison in the condition once, and only act 

according to its data once. That is what caused the robot to drive 

forward and accelerate beyond the speed limit. 

23 Have the students complete the following missions (MAX 3 minutes) 

Pack: Cruise Control 

2. Cruise Control 

NOTE: the code is not yet complete. It is missing a “repeat forever” loop.  

In its current state, the code makes the robot drive forward 

indefinitely, because it doesn’t loop back to the condition after the 

first run. 

The idea is for the students to figure it out on their own that the loop 

element is missing. It is step 4 in the pseudo code. 

If one of the students catches onto this and says, “wait, we forgot 

step 4!” then praise them and say we will take care of it now. If not, 

try to lead up to it, then move on to next slide. 

Session 3: Cruise Control 

 



 

 
85 85 

Appendix - Teacher’s Notes 
 

 

 

 

 

  

Part # Slide # Notes 

3 
2 Explain that now we don’t have to build a complicated block with a 

loop and several conditions. Whatever speed we set the robot’s 

motors to, it will maintain that speed, even when driving uphill or 

downhill.  

Try it and see! 

3 Have the students complete the following missions (10-15 minutes) 

Pack: Cruise Control 

Quick to the Block 

Speed Bump 

Note: these missions are the same as missions 3-4 (Uphill Scuttle + 

Steady Climbing) but now the students can complete them much 

easier thanks to the “set speed” block. 

Session 3: Cruise Control 

 



 

 
86 86 

Appendix - Teacher’s Notes 
 

 

 

Session 4: Dangerous Curves 1 

 

 

 

 

 

 

 

 

 

  

Part # Slide # Notes 

1 
2 Remind the students of what we did in the previous lesson: 

Ask the students if anyone had any difficulty or has any questions 

before we learn anything new today 

6 Ask the students: who here lives on a straight street? (show of hands) 

Well once you get to your house, you probably have to turn in order 

to face your house, or to pull into your driveway/garage, right? 

And who lives in a street that curves? (show of hands) 

See, life isn’t always just straight. Sometimes you have to be 

flexible, and to curve this way or that.  

This is what our lesson today will be about. 

10 Ask the students to remember which direction is clockwise and 

counterclockwise. If there is an analogue clock in the classroom, 

use it to demonstrate. 

Clockwise = rotating to the right 

Counterclockwise = rotating to the left 

13 A screw turn can be useful for making very tight, precise turns.  

During a screw turn the robot stays in place and doesn’t move 

forward or backward or to the sides. 

If the right wheel is spinning backward and the left forward (like in 

this example) the robot will spin to the right – clockwise. 

If the left wheel is spinning backward and the right forward, the 

robot will spin to the left – counterclockwise. 

In other words: the robot will spin in the direction of the wheel that 

is spinning backwards.  



 

 
87 87 

Appendix - Teacher’s Notes 
 

 

 

 

 

 

 

 

  

Part # Slide # Notes 

1 
14 Movement menu > “set speed” block > snap to “program start” 

block > change left motor to 50 and right motor to -50. 

This will result in a screw turn to the right. 

16 For turns we will always use a low speed, so that the turn is slow. 

Ask the students: but how do we know when to stop? 

The answer is: we use the gyro sensor.  

17 Break-down / demonstration in next slide 

19 Explain the building of the command block: 

Step 1: Add a “wait until” block. 

Step 2: Wait until what? Until some comparison becomes true. 

Step 3: What is that comparison? The first element, the one we will 

compare, is the value from the robot’s gyro sensor. 

Step 4: What are we comparing the gyro sensor’s value to?  

Explain that after this turning block we created we need to brake 

again, otherwise the robot will continue turning. 

21-20  Now here’s the tricky part. Technically, we want the robot to stop 

at 90 degrees. But we need to use a ≥ sign (greater than and equal 

to) in order for the robot to recognize the angle and stop there. So, 

actually, this block says to wait until the gyro sensor recognizes an 

angle that is greater than or equal to 90 degrees for a right turn. 

If we are turning to the left, then the values of the gyro sensor are 

going down from 0, into the negatives. So, we need the gyro sensor 

to recognize an angle that is smaller than -90, like -91, -95, -100 etc.  

* Make sure the students understand the negative values: -100 is 

smaller than -90. 

Session 4: Dangerous Curves 1 

 



 

 
88 88 

Appendix - Teacher’s Notes 
 

  

Part # Slide # Notes 

1 
22 Ask for 5 volunteers. Have 1 student stand in the middle, 

surrounded by the other 4 students at 90-degree angles (like the 

points of a compass) 

Ask the student in the middle to spin in place (direction doesn’t 

matter) for several seconds – at least 3-4 spins. 

Ask the student to try to stop facing one of his fellow students 

directly. 

Most likely the student will not succeed and will ‘drift’ a bit further. 

Explain that because of their spin and momentum, it took a while to 

stop completely. 

26 See, time is tricky. If we were to drive for 3 seconds at full speed, 

we would go a further distance than if we were to drive for 3 

seconds at 20% speed. 

Because time * speed = distance traveled, any change in speed 

results in a different distance that Ruby will drive. 

By using distance to tell Ruby exactly how far to drive, we are 

making it much simpler, and more importantly, consistent. 

28 If animation is unclear to students, draw the figure on the 

classroom board and explain each angle (first 180, then a= inner, 

then b=outer) 

Explain that 180 = straight line, driving straight forward, and that the 

two angles (a=inner + b=outer) together equal 180 degrees. 

29 Open mission V Curve and open Explore Mode. Show how to use 

the tool to discover angles. If necessary, move the robot around the 

scene first via manual control. 

31 Have the students complete the following missions (10-15 

minutes): 

Pack: Dangerous Curves 1 

L Turn 

V Turn 

Session 4: Dangerous Curves 1 

 



 

 
89 89 

Appendix - Teacher’s Notes 
 

 

  

Part # Slide # Notes 

2 
1 Explain that the values of the gyro sensor are continuous, and 

relative to the robot’s original starting point. 

2 Explain that using Explore Mode we can discover that the inner 

angles at both points of the N are both 45 degrees, meaning we 

must turn 135 degrees twice  

This is the same calculation we used for the letter V: 180 – 45 = 

135. 

If animation is unclear to students, draw the figure on the 

classroom board and explain each angle and each turn (outline 

directions of turns) 

Ask the class: After the second turn, what will our gyro sensor 

show? 

The answer is: 0 degrees, because we turned the same amount as 

we did the first turn, but in the opposite direction. So, basically, the 

second turn ‘cancelled out’ the first turn and brought us (the robot) 

back to its original direction (facing forwards)  

If we would have turned in the same direction, the gyro sensor 

would have shown the sum of the two angles (135 + 135 = 270) 

3 Have the students complete the following missions (10-15 

minutes): 

Pack: Dangerous Curves 

N Curve 

M Curve 

Session 4: Dangerous Curves 1 

 



 

 
90 90 

Appendix - Teacher’s Notes 
 

 

  

Part # Slide # Notes 

3 
1 Explain that using a “reset gyro” block after each turn, or right 

before performing a turn, means that we will only ever have to 

calculate the angle of the turn itself, starting from 0 degrees before 

each turn.  

We don’t have to do this. But if we do not use the “reset gyro” block 

then we have to remember that all the turns’ degrees add up, and 

calculate accordingly. 

2 Explain that there still might be some movement of the stationary 

wheel, because it is not locked in place. However it is only ‘being 

moved’ by the fact that the robot itself is moving – the engine 

controlling this wheel is not powered. 

4 Explain that finding the correct angle is a matter of trial and error 

and depends on the robot’s speed.  

20% speed and an angle of 55 might be enough for a 90-degree 

turn in the end, or it might not be enough, or it might be too much. 

If the robot drives faster, at 50%, you’ll probably need to put a 

smaller value in the gyro block. It balances out. 

6 Have the students complete the following missions (10-15 

minutes): 

Pack: Dangerous Curves 

I Curve 

J Curve 

Session 4: Dangerous Curves 1 

 



 

 
91 91 

Appendix - Teacher’s Notes 
 

 

 

Session 5: Dangerous Curves 2 

 

  
Part # Slide # Notes 

1 
2 Remind the students of what we did in the previous lesson: 

We learned about two types of turns: the screw turn, and the pivot turn. 

We completed several missions using these two types of turns. 

We learned about the gyro sensor and how we can reset it to 0 after 

a turn, and how if we don’t, then all the turns’ angles add up. 

6 Explain that this block uses its own control system behind the 

scenes, checking the robot’s current gyro reading, comparing it to 

the angle we want it to turn to, deciphering if it needs to turn 

clockwise or counter-clockwise, and then turning very carefully and 

precisely to exactly that angle.  

It means we don’t have to take into consideration the robot’s 

momentum, and we won’t have to play around with “oh, we want to 

turn to 135 degrees but the robot’s momentum will carry it further, 

so let’s try 110 degrees and see if that works...” 

If you tell it to turn to 135 degrees – it will turn exactly to 135 

degrees and no further! 

8 By the difference in speeds of the two wheels (motors) we’ll 

determine the route the robot will take – the radius of the turn. 

The larger this difference, the tighter the turn will be. 

For example, if the left wheel is turning at 20% speed, and the right 

at 80%, it means that the left wheel is moving very slowly, and the 

left side of the robot will travel a very short distance. The right 

wheel is travelling very fast, meaning the right side of the robot will 

travel more distance – this will result in the robot turning a very 

tight turn to the left. 

If we let the robot continue its smooth turn indefinitely, it will 

basically drive in a circle. 

9 Movement menu > “set speed” block > snap to “program start” 

block > change left motor to 20 and right motor to 80. 

This will result in a smooth turn to the left 



 

 
92 92 

Appendix - Teacher’s Notes 
 

 

  

Part # Slide # Notes 

2 
2 After the U-turn robot animation completes -  

Ask the students: What angle does a U-turn have? 

The right answer is: 180 degrees. The robot needs to be facing in 

the opposite direction, so the gyro sensor needs to reach +180 

degrees throughout the turn. 

3 Ask the students: What angle does a U-turn have? 

The right answer is: 180 degrees. The robot needs to be facing in 

the opposite direction, so the gyro sensor needs to reach +180 

degrees throughout the turn. 

Explain that now that we know how far (in degrees) to turn, and 

how to perform a smooth turn, we should be able to navigate this 

U-turn mission with ease. 

6 Explain that using a “reset gyro” block after each turn, or right 

before performing a turn, means that we will only ever have to 

calculate the angle of the turn itself, starting from 0 degrees before 

each turn.  

We don’t have to do this. But if we do not use the “reset gyro” block 

then we have to remember that all the turns’ degrees add up, and 

calculate accordingly. 

For example, in the S-Turn, we are turning first 180 degrees to the 

right, and then at the second turn, 180 degrees to the left. 

If we do not use the gyro reset block, then we must calculate the 

second turn back to 0 degrees, since we are calculating 180 – 180 = 0. 

If we do use the gyro reset block, then we need to calculate the 

second turn to -180 degrees, since we are calculating 0 – 180 = -

180 (turns left/ccw from 0 run into the negative values) 

7 Have the students complete the following missions (10-15 

minutes): 

Pack: Dangerous Curves 2 

U Turn 

S Turn 

Session 5: Dangerous Curves 2 

 



 

 
93 93 

Appendix - Teacher’s Notes 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

Part # Slide # Notes 

3 
4 Use a loop for drawing the star, it’ll be easier. 

Note that because of the placement of Ruby’s trail drawer, Ruby 

draws a little squiggle when she turns or rotates. Therefore, you 

might want to stop the trail while Ruby turns, then start it up again 

when Ruby starts driving forward again. 

5 Have the students complete the following missions (10-15 

minutes): 

Pack: Dangerous Curves 2w 

Freeform Art 

Star Trail 

Session 5: Dangerous Curves 2 

 



 

 
94 94 

Appendix - Teacher’s Notes 
 

 

 

Session 6: Doodling with Distance 

This pack is a great opportunity to use Repeat Loops (especially for drawing 

patterns). Technically this subject has not yet been taught in-depth in CR102, but 

any student who remembers Repeat Loops and wishes to use them is welcome to. 

 

 

  



 

 
95 95 

Appendix - Teacher’s Notes 
 

 

 

Session 7: Touch, Avoid, Repeat 
 

  Part # Slide # Notes 

1 
9 Ruby’s touch sensor is located on her front left arm for the first few 

missions of the pack. It might be located in a different position in 

future missions! 

10 Explain that this type of sensor, which gives a true/false reading, is 

called a Boolean sensor. It’s like binary code – either 1 or 0, 1 being 

true/on and 0 being false/off 

11 Most of the time, the touch sensor will read False, because most of 

the time Ruby is not touching anything. 

In this GIF, Ruby is facing the wall dead-on, which is why both 

sensors are pressed at the same time. If Ruby were touching the 

wall at an angle, with only her left touch sensor or her right sensor 

touching the wall, the readings would show only the left or right 

sensor reading TRUE, respectively. 

13 Explain that “until we touch the container/tree” actually means 

“until the touch sensor gives us a TRUE value” 

14 Whichever sensors are configured for Ruby for any particular 

mission, these are the sensors that will appear in the Sensors 

menu. They are usually numbered, or called meaningful names like 

“fwd_left” so that we can easily understand which sensor we are 

dealing with 

21 It doesn’t matter if Ruby is touching a container, a tree, or a fence – 

all that’s necessary is to check if the touch sensor is saying TRUE. 

In order for “90 degrees counter-clockwise” to always work, we 

must use a “reset gyro” block after each turn, inside the loop, so 

that Ruby will always turn 90 degrees counter-clockwise relative to 

where she is facing right now. 



 

 
96 96 

Appendix - Teacher’s Notes 
 

 

  

Part # Slide # Notes 

1 
22 Let the students write pseudo-code on their own if they want to. 

23 Have the students complete the following missions (10-15 minutes): 

Pack: Apple Picking 

Red Apple Trees 

Trees on The Left 

Note: The second loop technically only needs 2 repeats, and then a 
block to drive forward towards the target. Explain that by adding 
another repetition to the loop (3 instead of 2) we can utilize the 
‘drive forward’ block in the loop to drive forwards! 

Repeat Picking 

2 

4 Explain that this type of sensor, which gives a numerical value, is an 

integer sensor – it returns values in whole numbers. 

Also explain that if it is placed in Ruby’s front, then it is “inside” her 

arms’ range, it does not stick out as much as the other sensors. 

This means that when the robot hits a wall, the ultrasonic sensor is 

still a few centimeters away from the wall and its reading will show 

a value of a few centimeters. 

5 Explain that for this mission, we have the bad containers placed 

closer to us. We want to keep driving forward until we reach a point 

where the sensor recognizes something placed further than 80 cm 

from us – the good container which we want to touch. 

6 Ask the students which trick that we learned in the last few 
missions we should also use here? 

The answer is: a repeat loop! 

Ruby needs to pass a bad container which is closer to her (we can 

use manual control and Explore Mode to determine the exact 

distance) and recognize a container that is further away from her (a 

good container), turn to 90 degrees, drive forward until she touches 

the good container, then drive backward until she is out of range of 

the bad containers, stop, then turn back to face forward (0 degrees). 

Ruby needs to repeat this process 5 times before she can drive to 

the target! 

Session 7: Repeat Touching or Avoiding Obstacles 



 

 
97 97 

Appendix - Teacher’s Notes 
 

 

 

  

Part # Slide # Notes 

2 
7 This mission is quite similar to the previous one (Trees on the 

Right) except that now Ruby has to go both left and right. 

But does she really have to go in both directions? 

Hint: once she has turned right, she can drive forward to the 

container on the right, then drive backward to the container on the 

left! 

Session 7: Repeat Touching or Avoiding Obstacles 



 

 
98 98 

Appendix - Teacher’s Notes 
 

 

 

Session 8: Random Obstacles Ahead 
 

 

  

Part # Slide # Notes 

1 
5 It is helpful to think of variables as containers that hold information. 

7 Ask the students: Have we learned about any of these variables before? 

The answer is: We have learned about Boolean variables – the touch 

sensor gives us a true/false value. 

10 Software programmers usually give variables a descriptive name, 

which implies the value stored in the variable. (So the variable can be 

understood more clearly by us and by any outside reader looking at 

our code).  

16 Explain that when using “wait for ___ milliseconds” blocks, it might 

actually translate to different distances depending on the wheel 

speed or motor power. 

If Ruby drives forward at 100% speed/power for 2000 milliseconds, 

she will travel further than if she drives at 25% speed/power for 2000 

milliseconds. This makes “wait for time” blocks less precise. When 

we want to be very precise and absolutely accurate, we will measure 

distance using Explore Mode, and use ‘drive distance’ blocks. 

2 

5 Since the first command inside our loop is to drive forward at 100% 

speed, the two wait until commands can come directly one after the 

other and not interfere. All this time, Ruby is still driving forward, and 

she will wait until the ultrasonic registers the distances we need 

before she moves on to the next part of our code. 

8 If we have placed the “print” block inside a loop, then the value of the 

“containers passed” variable will be printed into the console each 

time the code reaches the block in the loop. 

9 Explain that a “repeat while” loop will make Ruby repeat the code 

inside it until the condition is met. 

Therefore, our condition is “while the value of the variable 

containers_passed is smaller than 3”. 

3 
5 Since the first command inside our loop is to drive forward at 100% 

speed, the two wait until commands can come directly one after the 

other and not interfere. All this time, Ruby is still driving forward, and 

she will wait until the ultrasonic registers the distances we need 

before she moves on to the next part of our code. 



 

 
99 99 

Appendix - Teacher’s Notes 
 

 

 

Session 9: Radar Missions 
  

Part # Slide # Notes 

1 
9 Since the first command in our code is to drive forward at 25% 

speed, the two wait until commands can come directly one after 

the other and not interfere. All this time, Ruby is still driving forward, 

and she will wait until the ultrasonic registers the distances we 

need before she moves on to the next part of our code. 

12 0 is the first number in programming, rather than 1. 

So, the first joint will be joint 0. 

2 
6 Technically, a double type variable could also work. However, 

doubles take up more computing space, and since we are working 

with whole numbers (no decimals), an integer would work just fine. 



 

 
100 100 

Appendix - Teacher’s Notes 
 

 

 

Session 10: Colorful Code 
 

  
Part # Slide # Notes 

1 
11 Explain that “one” and “1” are both string values and are not the 

same as an integer variable’s value of 1. 

Using string values in an equation will result in completely different 

values than using integers or doubles. 

Examples: 

[ “1”] + [ “1”] = 11 (but it does not equal eleven! It’s a textual 1 and 

next to it another textual 1) 

[ “1”] + [ “5”] = 15 (not 6! But also, not fifteen. It’s a textual 1 and 

next to it a textual 5) 

13 Ruby’s color sensor has two functions: 

• Color Detection 

• Reflected Light Measurement  

For this lesson we will only be using the color detection mode. 



 

 
101 101 

Appendix - Teacher’s Notes 
 

 

 

Session 11: Repeat Again 

 

  
Part # Slide # Notes 

1 
6 Think of Russian nesting dolls (Matryoshka/Babushka) where there 

are smaller dolls inside bigger dolls. The concept is the same. 

8 We could go even deeper and say that within every month are four 

weeks, and within each week are 7 days.  



 

 
102 102 

Appendix - Teacher’s Notes 
 

 

 

Session 12: Magnetic Manipulation 

 

  
Part # Slide # Notes 

1 
9 It’s important to put a wait until get magnet arm position = [“up” / 

“down”] blocks directly after the pink magnet arm position block, 

before the next command. 

By doing this, we make sure that Ruby does not move on to the next 

command (which might be driving forward or backward, braking, 

turning, etc.) until the magnet arm has finished rising or lowering. 

This could make or break a mission! 

12 Since there are 3 magnet boxes and Ruby needs to perform the same 

actions for each one, advise the students to use a repeat loop. 

It’s possible to use repeat 3 times, but this will necessitate an extra 

block to drive forward after the loop. 

The better option is to use a repeat forever loop, which will save us 

that extra block, and the mission will simply end early in the 4th 

iteration when Ruby reaches the target. 

2 
5-6 This is also a good place to use a repeat loop, since Ruby needs to 

magnetize two magnet boxes and drop them in the correct places 

to fill the gaps in the bridge. 

Note that the yellow lines are only for decoration and the code does 

not need to include any reference to them. 

3 
4 If the students do not remember logic operators, you can show 

them Lesson 10 Part 2 

7 Since the scene is symmetrical, it doesn’t matter if Ruby goes first 

for the magnet boxes on the right and then on the left, or first to the 

left and later to the right - so long as we keep our degrees straight 

and don’t mix up 90 and -90. 

8 In order to keep our directions straight, we’ll use a variable for our direction 

and using this variable as the value for a turn to block. This way it will be 

easy to toggle between right and left at the end of the loop, by setting the 

direction to itself x (-1), therefore changing from 90 to -90 [ 90 x (-1) = -90 ], 

or from -90 to 90 [ (-90) x (-1) = 90 ]. 

This code can work the same way if the student uses 90 or -90 for 

the initial value of the variable.  

If there is time left in the lesson, demonstrate this by switching the 

initial value. 



 

 
103 103 

Appendix - Teacher’s Notes 
 

 

 

Session 13: Line Following Logic 

  

Part # Slide # Notes 

1 
13 At first, Ruby is centered exactly on the middle of the line, in a way 

that both her sensors detect the same color - “Green”. Once we 

decide we want to follow the left edge of the line, we need to start 

working with the left color sensor and focus on its readings. 

For this reason, the first statement inside the if/else loop (do) will 

be to drive slightly to the left. 

To do this, we have to give Ruby’s right wheel more speed than the 

left wheel, forcing her to the left. 

14 Since the first statement was driving to the left, the second 

statement (else) has to be driving slightly to the right. 

To do this, we have to give Ruby’s left wheel more speed than the 

right, forcing her to the right. 

15 Since the if/else loop is inside a repeat forever loop, these two 

statements (drive slightly to the left if you see green, else drive 

slightly to the right) will drive Ruby gradually forwards in a funny 

zig-zagging way. 

19 When a line curves to the left, the right edge - the “outside” edge - 

of the line will be slightly longer/wider than the left “inside” edge. 

We are using high speeds in this mission because of the time limit, 

so we need as much edge as we can find, so Ruby doesn’t drive too 

far and lose the edge. 

By using the right color sensor and following the right edge, Ruby 

will still be mostly “on” the line itself because only her right sensor, 

on the front right bumper, is on the right edge. 

If the line was curving to the right, we would work with the left 

“outside” edge and use the left color sensor. 

20 Clicking the hand icon will show a reminder of the OR logic 

operator. 

If the students do not remember logic operators, you can show 

them Lesson 10 Part 2. 



 

 
104 104 

Appendix - Teacher’s Notes 
 

  

Part # Slide # Notes 

2 
4-5 If the students have a hard time understanding the need for middle 

ground or the mean formula (35 + 100) : 2 ≈ 70, perform an 

experiment with them: 

Ask for 2 volunteers. 

Mark 2 lines on the floor with electrical tape/erasable marker, 

several meters apart, one marked 35 and the other marked 100. 

Have a student stand on each marking, facing each other. Then 

have both students take a (small) step forward, towards each other. 

Then another step. Then another - until the two students meet in 

the middle. (Maybe ask them to shake hands) 

Explain that they have now reached the middle ground between the 

two values, 35 and 100. This point, this middle ground, is the same 

distance from 35 as it is from 100. It is exactly in the middle. This is 

the “mean” or “average”. 

Technically the value is 65, but it’s okay to use something close to 

it, 70 will do as well. 

7 A different way of phrasing the comments in the picture could be: 

do (comment: reflection value 71 or higher - too close to the white 

line) 

else (comment: reflection value 69 or lower - too close to the brown 

floor) 

3 
4-5 By placing the “set variable to reflection value” block inside the 

repeat forever loop, we make sure that the “reflection” variable 

always shows the current value the sensor detects - it might 

change from second to second! This will make the corrections 

(later determined by the “correction” variable - slide 5) more 

precise, since the loop is always checking for the reflection value 

and acting according to it. 

Session 13: Line Following Logic 



 

 
105 105 

Appendix - Teacher’s Notes 
 

 

 

  

Part # Slide # Notes 

4 
3 If our deviation from the desired value is small, we’ll set our 

correction to a small value as well, resulting in a small, gentle 

correction. 

If our deviation from the desired value is LARGE - we’ll set our 

correction to a high value, which will make our corrections fast and 

quick. 

Note that the two lines in the graph are aligned - this is because the 

ratio/proportion is the same for all deviation values. This is the 

point of proportion. 

5 Note that with a big deviation such as 50 points (a reflection value 

of 100) Ruby’s correction would be quite big; but a minor deviation 

such as 10 points (a reflection value of 60 or 40) would need a 

much smaller, gentler correction.  

A reflection value of 50 - exactly our desired value, the middle 

ground between 0 and 100 - would require no correction at all, 

which means Ruby could keep driving straight. 

5 
General 

note 

These missions are quite complex. If students cannot complete 

these missions, show them solutions or give them hints. 

Session 13: Line Following Logic 



 

 
106 106 

Appendix - Teacher’s Notes 
 

 

 

Session 14: A Hard Block Life 

 

  
Part # Slide # Notes 

1 
5 An encoder is an electromechanical device that converts the 

angular position of the motor axle to an electrical signal that is 

used for speed and/or position control. Each motor has its own 

independent encoder, just like every wheel has its own motor. 

6 The encoders’ values are in degrees, since they are connected to 

the rotation of the wheel axles. One full rotation of a wheel when 

driving forward will show 360 degrees on that wheel’s encoder, two 

rotations will show 720 degrees, etc. 

One full rotation driving backward will show -360.  

If Ruby drives straight (either forward or backward) then both 

wheels/axles are turning the same amount/the same degrees, so 

both encoders will show the same number. 

7 If Ruby turns on the spot (screw turn) then the two encoders will 

show the same values, just one positive and one negative, since 

one wheel is spinning forward and the other one backward.  

If performing a smooth turn, then one encoder will show a higher 

value and the other a lower value, since one wheel is spinning at a 

higher speed than the other. 

11 If students need more reminders about joints and the sensor 

rotation blocks, go to Lesson 9 Part 1. 

2 
3 This technique of correcting by driving Ruby in gentle zig-zags 

(where one wheel spins faster than the other) is the same 

technique we used for line following in Lesson 13. 

13 Note that in this mission, we’ll be using the error / deviation from 

(Y=0) as it is, using the get gyro y axis block. In more advanced 

missions, we will use a variable to represent this error, since we 

might want to manipulate it (multiply or divide) to aid our code. 

https://en.wikipedia.org/wiki/Angle


 

 
107 107 

Appendix - Teacher’s Notes 
 

 

Part # Slide # Notes 

3 
2 Explain the strategy for aligning to the white lines: 

At first both of Ruby’s color sensors see the brown floor (a 

reflection value of 35). 

Once Ruby starts driving forward, her left color sensor will be the 

first of the two sensors to detect a higher reflection value (the 

white line’s value is 100) because of the angle the line is drawn at.  

This is why we will be using the left color sensor throughout this 

mission to determine whether Ruby has reached the white line’s edge. 

3 But since we will be using a repeat forever loop, we have to take 

into consideration the second, third, fourth iterations of the loop, 

where Ruby is not standing with both sensors over the brown floor. 

After reaching the first white line and aligning to it, both of Ruby’s 

sensors will see the white line. 

This is why our first command inside the repeat loop, has to be 

driving forward until Ruby’s sensors no longer see the white line, 

but the brown floor instead.  

Since the brown floor’s reflection value is 35, we’ll use ≤ 50 

(smaller or equal to 50) for this. 

The next command is exactly the opposite - waiting until we see a 

reflection value greater than 50, which is just past the edge of the 

white line. 

4 Working with reflection values will be much easier and more 

precise for this mission, because we don’t want to limit ourselves 

to the Color Name values - they rely on almost completely white to 

work. We want to use a wider variety of values for this mission, 

which is why we’ll use reflection values. The real reason why will be 

shown in slide 5. 

10 In Adjusting Left mission, the lines were drawn in a half-circle 

around the car in the middle, facing “inward”, which meant that it 

would always be Ruby’s left (“inner”) color sensor which would 

detect the edge of the white line first. 

In Reflection Redirection mission, the white lines are drawn on the 

floor in opposite angles, which means that every time Ruby drives 

off of one line and onto another - it will be a different color sensor 

which will reach the edge of the line first. 

Session 14: A Hard Block Life 


